Browse code

Vignette syntax optimizations

balomenos authored on 26/09/2017 22:44:55
Showing 3 changed files

... ...
@@ -1,5 +1,5 @@
1 1
 Package: DEsubs
2
-Version: 1.3.2
2
+Version: 1.3.3
3 3
 Date: 2017-07-23
4 4
 Title: DEsubs: an R package for flexible identification of
5 5
         differentially expressed subpathways using RNA-seq expression
... ...
@@ -1,3 +1,6 @@
1
+1.3.3:  - Replaced kable tables with pure markdown syntax.
2
+        - Placed external figure importing within chunks.
3
+ 
1 4
 1.3.2:  - Version-bump 
2 5
 1.3.1:  - Minor compatibility update (igraph).
3 6
 
... ...
@@ -92,66 +92,53 @@ DEsubs accepts RNA-seq expression paired case-control profile data. The followin
92 92
 example in Table 1 shows the right structure for RNA-seq expression data input.
93 93
 
94 94
 
95
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
96
-
97
-data <- c(    1879, 2734, 2369, 2636, 2188, 9743, 9932, 10099,
98
-            97, 124, 146, 114, 126, 33, 19, 31,
99
-            485, 485, 469, 428, 475, 128, 135, 103,
100
-            '...', '...', '...', '...', '...', '...', '...', '...',
101
-            84, 25, 67, 62, 61, 277, 246, 297,
102
-            120, 312, 78, 514, 210, 324, 95, 102)
103
-data <- matrix(data, nrow=6, ncol=8, byrow=TRUE)
104
-
105
-rownames(data) <- c(paste0('Gene ', 1:3), '...',  'Gene N-1', 'Gene N')
106
-colnames(data) <- c(paste0('Case ', 1:4), paste0('Control ', 1:4))
107
-
108
-kable( data,
109
-    caption = 'Example of user input format' )
110
-```
95
+Gene               Case 1    Case 2    Case 3    Case 4    Control 1 Control 2 Control 3 Control 4
96
+------------------ --------- --------- --------- --------- --------- --------- --------- ---------
97
+Gene 1             1879      2734      2369      2636      2188      9743      9932      10099
98
+Gene 2             97        124       146       114       126       33        19        31
99
+Gene 3             485       485       469       428       475       128       135       103
100
+...                ...       ...       ...       ...       ...       ...       ...       ...
101
+Gene N-1           84        25        67        62        61        277       246       297
102
+Gene N             120       312       78        514       210       324       95        102
103
+------------------ --------- --------- --------- --------- --------- --------- --------- ---------
104
+Table: Example of user input format
111 105
 
112 106
 
113 107
 ## 3. Pathway network construction
114 108
 KEGG signaling pathway maps have been downloaded and converted to pathway 
115
-networks using CHRONOS package. Pathway networks for the six supported 
109
+networks using CHRONOS package. Pathway networks for the seven supported 
116 110
 organisms are included in the package itself (see Table 2). 
117 111
 
118
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
119 112
 
120
-data <- c(  'Homo sapiens', "'hsa'", 
121
-            'Mus musculus', "'mmu'", 
122
-            'Drosophila melanogaster', "'dme'", 
123
-            'Saccharomyces cerevisiae', "'sce'",
124
-            'Arabidopsis thaliana', "'ath'",
125
-            'Rattus norvegicus', "'rno'",
126
-            'Danio rerio', "'dre'")
127
-data <- matrix(data, nrow=7, ncol=2, byrow=TRUE)
113
+Supported Organisms                      R command
114
+--------------                           ----------------
115
+Homo sapiens                             'hsa'
116
+Mus musculus                             'mmu'
117
+Drosophila melanogaster                  'dme'
118
+Saccharomyces cerevisiae                 'sce'
119
+Arabidopsis thaliana                     'ath'
120
+Rattus norvegicus                        'rno'
121
+Danio rerio                              'dre'
122
+--------------                           ----------------
123
+Table: Supported KEGG organisms
128 124
 
129
-rownames(data) <- rep('', nrow(data))
130
-colnames(data) <- c('Supported Organisms', 'R command')
131 125
 
132
-kable( data,
133
-    caption = 'DEsubs supported KEGG organisms' )
134
-```
135 126
 
136 127
 DEsubs operates with Entrez ID labels, however twelve other label systems 
137 128
 are supported after converting to Entrez IDs via a lexicon included in 
138 129
 the package itself (see Table 3). 
139 130
 
140
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
141
-
142
-data <- c(  'Entrez', "'entrezgene'", 
143
-            'Ensemble', "'ensembl_gene_id', 'ensembl_transcript_id'", 
144
-            '', "'ensembl_peptide_id'",
145
-            'HGNC', "'hgnc_id', 'hgnc_symbol', 'hgnc_transcript_name'",
146
-            'Refseq', "'refseq_mrna', 'refseq_peptide'")
147
-data <- matrix(data, nrow=5, ncol=2, byrow=TRUE)
148 131
 
149
-rownames(data) <- rep('', nrow(data))
150
-colnames(data) <- c('Supported Labels', 'R command')
132
+Supported Labels              R command
133
+------------                  ----------------
134
+Entrez                        'entrezgene'
135
+Ensemble                      'ensembl_gene_id', 'ensembl_transcript_id'
136
+                              'ensembl_peptide_id'
137
+HGNC                          'hgnc_id', 'hgnc_symbol', 'hgnc_transcript_name'
138
+Refseq                        'refseq_mrna', 'refseq_peptide'
139
+------------                  ----------------
140
+Table: Supported gene labels
151 141
 
152
-kable( data,
153
-    caption = 'Supported gene labels' )
154
-```
155 142
 
156 143
 
157 144
 \newpage
... ...
@@ -200,19 +187,14 @@ DEsubs.run <- DEsubs(   org='hsa',
200 187
 
201 188
 
202 189
 
203
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
204
-
205
-data <- c(  'Pearson product-moment correlation coefficient', "'pearson'", 
206
-            'Spearman rank correlation coefficient', "'spearman'", 
207
-            'Kendall rank correlation coefficient', "'kedhall'")
208
-data <- matrix(data, nrow=3, ncol=2, byrow=TRUE)
190
+Type                                                R command
191
+--------------                                      ----------------
192
+Pearson product-moment correlation coefficient      'pearson'
193
+Spearman rank correlation coefficient               'spearman'
194
+Kendall rank correlation coefficient                'kedhall'
195
+--------------                                      ----------------
196
+Table: Edge Rule options
209 197
 
210
-rownames(data) <- rep('', nrow(data))
211
-colnames(data) <- c('Type', 'R command')
212
-
213
-kable( data,
214
-    caption = 'Edge Rule options' )
215
-```
216 198
 
217 199
 Supported Labels                                    R command
218 200
 --------------                                      ----------------
... ...
@@ -235,14 +217,21 @@ Table: Node Rule options
235 217
 Subpathway extraction is based on five main categories, (i) components, 
236 218
 (ii) communities, (iii) streams, (iv) neighborhoods, (v) cascades. Each one 
237 219
 sketches different topological aspect within the network. Indicative examples 
238
-and a short description of DEsubs five main subpathway categories cam be found 
220
+and a short description of DEsubs five main subpathway categories can be found 
239 221
 in Figure 1.
240 222
 
241
-![Stream, neighborhood and cascade types build each subpathway (blue nodes)
242
-by starting from a gene of interest (red nodes). Components and communities 
243
-are densely linked group of genes with the difference that the genes sharing 
244
-common properties are maintained within the graph (green nodes).
245
-](figures/fig1.png "DEsubs main subpathway categories"){height=320px}
223
+
224
+```{r eval=TRUE, echo=FALSE, out.height='235px', fig.align='center', fig.cap=cap, fig.pos='h', out.extra=''}
225
+
226
+cap <- paste0(
227
+    'Stream, neighborhood and cascade types build each subpathway ',
228
+    '(blue nodes) by starting from a gene of interest (red nodes). ',
229
+    'Components and communities are densely linked group of genes with the ',
230
+    'difference that the genes sharing common properties are maintained ',
231
+    'within the graph (green nodes).')
232
+
233
+knitr::include_graphics('figures/fig1.png')
234
+```
246 235
 
247 236
 
248 237
 The component category extracts strongly connected group of genes 
... ...
@@ -296,45 +285,39 @@ significant DEGs of his own experiment. A short description for all GOI types
296 285
 along with the corresponding parameters are shown in Table 6. 
297 286
 
298 287
 
299
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
300
-
301
-data <- c(  '**Topological**', '', "",
302
-'Degree', 'Number adjacent interactions of the gene', "'degree'", 
303
-'Betweenness', 'Number of shortest paths from all vertices to all', 
304
-"'betweenness'",
305
-'', 'others that pass through that node', "",
306
-'Closeness', 'Inverse of farness, which is the sum of distances', 
307
-"'closeness'",
308
-'', 'to all other nodes', '',
309
-'Hub score', 'Kleinbergs hub centrality score', "'hub_score'",
310
-'Eccentricity', 'Shortest path distance from the farthest', "'eccentricity'",
311
-'', 'node in the graph', '', 
312
-'Page rank', 'Google Page Rank', "'page_rank'",
313
-'Start Nodes', 'Nodes without any incoming links', "'start_nodes'",
314
-'**Functional**', '', "",
315
-'DEG', 'Genes highly differentially expressed', "'deg'",
316
-'', 'according to the experimental data', '',
317
-'Pathways', 'Genes acting as bridges among KEGG pathways', "'KEGG'",
318
-'Biological Process', 'Genes acting as bridges among', "'GO_bp'",
319
-'', 'Gene Ontology Biological Process terms', '', 
320
-'Cellular Component', 'Genes acting as bridges among', "'GO_cc'",
321
-'', 'Gene Ontology Cellular Component terms', '', 
322
-'Molecular Function', 'Genes acting as bridges among', "'GO_mf'",
323
-'', 'Gene Ontology Molecular Function terms', '', 
324
-'Disease', 'Genes acting as bridges for OMIM targets', "'Disease_OMIM'",
325
-'Disease', 'Genes acting as bridges for GAD targets', "'Disease_GAD'",
326
-'Drug', 'Genes acting as bridges for DrugBank targets', "'Drug_DrugBank'",
327
-'microRNA', 'Genes acting as bridges for microRNA targets', "'miRNA'",
328
-'Transcription Factors', 'Genes acting as bridges for TF targets', "'TF'"
329
-)
330
-data <- matrix(data, nrow=26, ncol=3, byrow=TRUE)
331
-
332
-rownames(data) <- rep('', nrow(data))
333
-colnames(data) <- c('Type', 'Description', 'R parameter')
334
-
335
-kable( data,
336
-    caption = 'Gene of interest (GOI) types' )
337
-```
288
+Type                  Description                                           R command
289
+--------------------- ----------------------------------------------------  ----------------
290
+**Topological**
291
+Degree                Number of adjacent interactions of the gene           'degree'
292
+Betweenness           Number of shortest paths from all vertices to all     'betweenness'
293
+                      others that pass through that node
294
+Closeness             Inverse of farness, which is the sum of distances     'closeness'
295
+                      to all other nodes
296
+Hub score             Kleinbergs hub centrality score                       'hub_score'
297
+Eccentricity          Shortest path distance from the farthest              'eccentricity'
298
+                      node in the graph
299
+Page rank             Google Page Rank                                      'page_rank'
300
+Start Nodes           Nodes without any incoming links                      'start_nodes'
301
+**Functional**
302
+DEG                   Genes highly differentially expressed                 'deg'
303
+                      according to the experimental data
304
+Pathways              Genes acting as bridges among KEGG pathways           'KEGG'
305
+Biological Process    Genes acting as bridges among                         'GO_bp'
306
+                      Gene Ontology Biological Process terms
307
+Cellular Component    Genes acting as bridges among                         'GO_cc'
308
+                      Gene Ontology Cellular Component terms
309
+Molecular Function    Genes acting as bridges among                         'GO_mf'
310
+                      Gene Ontology Molecular Function terms
311
+Disease               Genes acting as bridges for OMIM targets              'Disease_OMIM'
312
+Disease               Genes acting as bridges for GAD targets               'Disease_GAD'
313
+Drug                  Genes acting as bridges for DrugBank targets          'Drug_DrugBank'
314
+microRNA              Genes acting as bridges for microRNA targets          'miRNA'
315
+Transcription Factors Genes acting as bridges for TF targets                'TF'
316
+--------------------- ----------------------------------------------------  ----------------
317
+Table: Gene of interest (GOI) types
318
+
319
+
320
+
338 321
 
339 322
 ### 5.3. All subpathway options
340 323
 
... ...
@@ -346,224 +329,171 @@ sixteen and the community-based types are six based on igraph package.
346 329
 DEsubs therefore supports 124 subpathway types as described in Tables 7-11.
347 330
 
348 331
 
349
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
350
-
351
-data <- c(    
352
-'**Topological**', '', 
353
-'Forward and backward streams starting from',
354
-"'fwd.stream.topological.degree'",
355
-'genes/nodes with crucial topological roles',
356
-"'fwd.stream.topological.betweenness'",
357
-'within the network',               "'fwd.stream.topological.closeness'",
358
-'',                                 "'fwd.stream.topological.hub_score'",
359
-'', "'fwd.stream.topological.eccentricity'",
360
-'', "'fwd.stream.topological.page_rank'",
361
-'', "'fwd.stream.topological.start_nodes'",
362
-'', "'bwd.stream.topological.degree'",
363
-'', "'bwd.stream.topological.betweenness'",
364
-'', "'bwd.stream.topological.closeness'",
365
-'', "'bwd.stream.topological.hub_score'",
366
-'', "'bwd.stream.topological.eccentricity'",
367
-'', "'bwd.stream.topological.page_rank'",
368
-'', "'bwd.stream.topological.start_nodes'",
369
-'**Functional**', '', 
370
-'Forward and backward streams starting from', "'fwd.stream.functional.GO_bp'",
371
-'genes/nodes with crucial functional role',  "'fwd.stream.functional.GO_cc'",
372
-'within the network',                         "'fwd.stream.functional.GO_mf'",
373
-'',                                 "'fwd.stream.functional.Disease_OMIM'",
374
-'', "'fwd.stream.functional.Disease_GAD'",
375
-'', "'fwd.stream.functional.Drug_DrugBank'",
376
-'', "'fwd.stream.functional.miRNA'",
377
-'', "'fwd.stream.functional.TF'",
378
-'', "'fwd.stream.functional.KEGG_pathways'",
379
-'', "'fwd.stream.functional.DEG'",
380
-'', "'bwd.stream.functional.GO_bp'",
381
-'', "'bwd.stream.functional.GOC_cc",
382
-'', "'bwd.stream.functional.GO_mf'",
383
-'', "'bwd.stream.functional.Disease_OMIM'",
384
-'', "'bwd.stream.functional.Disease_GAD'",
385
-'', "'bwd.stream.functional.Drug_DrugBank'",
386
-'', "'bwd.stream.functional.miRNA'",
387
-'', "'bwd.stream.functional.TF'",
388
-'', "'bwd.stream.functional. KEGG_pathways'",
389
-'', "'bwd.stream.functional.DEG'") 
390
-data <- matrix(data, nrow=36, ncol=2, byrow=TRUE)
391
-
392
-rownames(data) <- rep('', nrow(data))
393
-colnames(data) <- c('Desciption', 'R parameter')
394
-
395
-kable( data,
396
-    caption = 'Subpathway Options - STREAM' )
397
-```
398
-
399
-
400
-
401
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
402
-
403
-
404
-data <- c(    
405
-'**Topological**', '', 
406
-'Forward and backward streams starting from ',
407
-                                "'fwd.neighbourhood.topological.degree'",
408
-'genes/nodes with crucial topological role',
409
-                                "'fwd.neighbourhood.topological.betweenness'",
410
-' within the network',          "'fwd.neighbourhood.topological.closeness'",
411
-'',                             "'fwd.neighbourhood.topological.hub_score'",
412
-'', "'fwd.neighbourhood.topological.eccentricity'",
413
-'', "'fwd.neighbourhood.topological.page_rank'",
414
-'', "'fwd.neighbourhood.topological.start_nodes'",
415
-'', "'bwd.neighbourhood.topological.degree'",
416
-'', "'bwd.neighbourhood.topological.betweenness'",
417
-'', "'bwd.neighbourhood.topological.closeness'",
418
-'', "'bwd.neighbourhood.topological.hub_score'",
419
-'', "'bwd.neighbourhood.topological.eccentricity'",
420
-'', "'bwd.neighbourhood.topological.page_rank'",
421
-'', "'bwd.neighbourhood.topological.start_nodes'",
422
-'**Functional**', '', 
423
-'Forward and backward streams starting from ',     
424
-                                "'fwd.neighbourhood.functional.GO_bp'",
425
-'genes/nodes with crucial functional role ',     
426
-                                "'fwd.neighbourhood.functional.GO_cc'",
427
-'within the network',                                     
428
-                                "'fwd.neighbourhood.functional.GO_mf'",
429
-'',                                                             
430
-                                "'fwd.neighbourhood.functional.Disease_OMIM'",
431
-'', "'fwd.neighbourhood.functional.Disease_GAD'",
432
-'', "'fwd.neighbourhood.functional.Drug_DrugBank'",
433
-'', "'fwd.neighbourhood.functional.miRNA'",
434
-'', "'fwd.neighbourhood.functional.TF'",
435
-'', "'fwd.neighbourhood.functional.KEGG_pathways'",
436
-'', "'fwd.neighbourhood.functional.DEG'",
437
-'', "'bwd.neighbourhood.functional.GO_bp'",
438
-'', "'bwd.neighbourhood.functional.GOC_cc",
439
-'', "'bwd.neighbourhood.functional.GO_mf'",
440
-'', "'bwd.neighbourhood.functional.Disease_OMIM'",
441
-'', "'bwd.neighbourhood.functional.Disease_GAD'",
442
-'', "'bwd.neighbourhood.functional.Drug_DrugBank'",
443
-'', "'bwd.neighbourhood.functional.miRNA'",
444
-'', "'bwd.neighbourhood.functional.TF'",
445
-'', "'bwd.neighbourhood.functional. KEGG_pathways'",
446
-'', "'bwd.neighbourhood.functional.DEG'") 
447
-data <- matrix(data, nrow=36, ncol=2, byrow=TRUE)
448
-
449
-rownames(data) <- rep('', nrow(data))
450
-colnames(data) <- c('Desciption', 'R parameter')
451
-
452
-kable( data,
453
-    caption = 'Subpathway Options - NEIGHBOURHOOD' )
454
-```
455
-
456
-
457
-
332
+Description                                     R parameter
333
+----------------------------------------------- ----------------------------------------------- 
334
+**Topological**
335
+Forward and backward streams starting from      'fwd.stream.topological.degree'
336
+genes/nodes with crucial topological roles      'fwd.stream.topological.betweenness'
337
+within the network                              'fwd.stream.topological.closeness'
338
+                                                'fwd.stream.topological.hub_score'
339
+                                                'fwd.stream.topological.eccentricity'
340
+                                                'fwd.stream.topological.page_rank'
341
+                                                'fwd.stream.topological.start_nodes'
342
+                                                'bwd.stream.topological.degree'
343
+                                                'bwd.stream.topological.betweenness'
344
+                                                'bwd.stream.topological.closeness'
345
+                                                'bwd.stream.topological.hub_score'
346
+                                                'bwd.stream.topological.eccentricity'
347
+                                                'bwd.stream.topological.page_rank'
348
+                                                'bwd.stream.topological.start_nodes'
349
+**Functional**
350
+Forward and backward streams starting from      'fwd.stream.functional.GO_bp'
351
+genes/nodes with crucial functional roles       'fwd.stream.functional.GO_cc'
352
+within the network                              'fwd.stream.functional.GO_mf'
353
+                                                'fwd.stream.functional.Disease_OMIM'
354
+                                                'fwd.stream.functional.Disease_GAD'
355
+                                                'fwd.stream.functional.Drug_DrugBank'
356
+                                                'fwd.stream.functional.miRNA'
357
+                                                'fwd.stream.functional.TF'
358
+                                                'fwd.stream.functional.KEGG'
359
+                                                'fwd.stream.functional.DEG'
360
+                                                'bwd.stream.functional.GO_bp'
361
+                                                'bwd.stream.functional.GO_cc'
362
+                                                'bwd.stream.functional.GO_mf'
363
+                                                'bwd.stream.functional.Disease_OMIM'
364
+                                                'bwd.stream.functional.Disease_GAD'
365
+                                                'bwd.stream.functional.Drug_DrugBank'
366
+                                                'bwd.stream.functional.miRNA'
367
+                                                'bwd.stream.functional.TF'
368
+                                                'bwd.stream.functional.KEGG'
369
+                                                'bwd.stream.functional.DEG'
370
+----------------------------------------------- ----------------------------------------------- 
371
+Table: Subpathway Options - STREAM
372
+
373
+
374
+
375
+
376
+Description                                     R parameter
377
+----------------------------------------------- ----------------------------------------------- 
378
+**Topological**
379
+Forward and backward neighbourhoods starting    'fwd.neighbourhood.topological.degree'
380
+from genes/nodes with crucial topological       'fwd.neighbourhood.topological.betweenness'
381
+roles within the network                        'fwd.neighbourhood.topological.closeness'
382
+                                                'fwd.neighbourhood.topological.hub_score'
383
+                                                'fwd.neighbourhood.topological.eccentricity'
384
+                                                'fwd.neighbourhood.topological.page_rank'
385
+                                                'fwd.neighbourhood.topological.start_nodes'
386
+                                                'bwd.neighbourhood.topological.degree'
387
+                                                'bwd.neighbourhood.topological.betweenness'
388
+                                                'bwd.neighbourhood.topological.closeness'
389
+                                                'bwd.neighbourhood.topological.hub_score'
390
+                                                'bwd.neighbourhood.topological.eccentricity'
391
+                                                'bwd.neighbourhood.topological.page_rank'
392
+                                                'bwd.neighbourhood.topological.start_nodes'
393
+**Functional**
394
+Forward and backward neighbourhoods starting    'fwd.neighbourhood.functional.GO_bp'
395
+from genes/nodes with crucial topological       'fwd.neighbourhood.functional.GO_cc'
396
+roles within the network                        'fwd.neighbourhood.functional.GO_mf'
397
+                                                'fwd.neighbourhood.functional.Disease_OMIM'
398
+                                                'fwd.neighbourhood.functional.Disease_GAD'
399
+                                                'fwd.neighbourhood.functional.Drug_DrugBank'
400
+                                                'fwd.neighbourhood.functional.miRNA'
401
+                                                'fwd.neighbourhood.functional.TF'
402
+                                                'fwd.neighbourhood.functional.KEGG'
403
+                                                'fwd.neighbourhood.functional.DEG'
404
+                                                'bwd.neighbourhood.functional.GO_bp'
405
+                                                'bwd.neighbourhood.functional.GO_cc'
406
+                                                'bwd.neighbourhood.functional.GO_mf'
407
+                                                'bwd.neighbourhood.functional.Disease_OMIM'
408
+                                                'bwd.neighbourhood.functional.Disease_GAD'
409
+                                                'bwd.neighbourhood.functional.Drug_DrugBank'
410
+                                                'bwd.neighbourhood.functional.miRNA'
411
+                                                'bwd.neighbourhood.functional.TF'
412
+                                                'bwd.neighbourhood.functional.KEGG'
413
+                                                'bwd.neighbourhood.functional.DEG'
414
+----------------------------------------------- ----------------------------------------------- 
415
+Table: Subpathway Options - NEIGHBOURHOOD
416
+
417
+
418
+
419
+
420
+Description                                     R parameter
421
+----------------------------------------------- ----------------------------------------------- 
422
+**Topological**
423
+Forward and backward cascades starting          'fwd.cascade.topological.degree'
424
+from genes/nodes with crucial topological       'fwd.cascade.topological.betweenness'
425
+roles within the network                        'fwd.cascade.topological.closeness'
426
+                                                'fwd.cascade.topological.hub_score'
427
+                                                'fwd.cascade.topological.eccentricity'
428
+                                                'fwd.cascade.topological.page_rank'
429
+                                                'fwd.cascade.topological.start_nodes'
430
+                                                'bwd.cascade.topological.degree'
431
+                                                'bwd.cascade.topological.betweenness'
432
+                                                'bwd.cascade.topological.closeness'
433
+                                                'bwd.cascade.topological.hub_score'
434
+                                                'bwd.cascade.topological.eccentricity'
435
+                                                'bwd.cascade.topological.page_rank'
436
+                                                'bwd.cascade.topological.start_nodes'
437
+**Functional**
438
+Forward and backward cascades starting          'fwd.cascade.functional.GO_bp'
439
+from genes/nodes with crucial topological       'fwd.cascade.functional.GO_cc'
440
+roles within the network                        'fwd.cascade.functional.GO_mf'
441
+                                                'fwd.cascade.functional.Disease_OMIM'
442
+                                                'fwd.cascade.functional.Disease_GAD'
443
+                                                'fwd.cascade.functional.Drug_DrugBank'
444
+                                                'fwd.cascade.functional.miRNA'
445
+                                                'fwd.cascade.functional.TF'
446
+                                                'fwd.cascade.functional.KEGG'
447
+                                                'fwd.cascade.functional.DEG'
448
+                                                'bwd.cascade.functional.GO_bp'
449
+                                                'bwd.cascade.functional.GO_cc'
450
+                                                'bwd.cascade.functional.GO_mf'
451
+                                                'bwd.cascade.functional.Disease_OMIM'
452
+                                                'bwd.cascade.functional.Disease_GAD'
453
+                                                'bwd.cascade.functional.Drug_DrugBank'
454
+                                                'bwd.cascade.functional.miRNA'
455
+                                                'bwd.cascade.functional.TF'
456
+                                                'bwd.cascade.functional.KEGG'
457
+                                                'bwd.cascade.functional.DEG'
458
+----------------------------------------------- ----------------------------------------------- 
459
+Table: Subpathway Options - CASCADE
460
+
461
+
462
+
463
+Type               Description                            R parameter
464
+------------------ -------------------------------------  -------------------------------------- 
465
+Random Walk         Community structures that minimize    'community.infomap'
466
+                    the expected description length of
467
+                    a random walker trajectory
468
+Modular             Community structures via a modularity 'community.louvain'
469
+                    measure and a hierarchical approach
470
+Walktraps           Densely connected subgraphs via       'community.walktrap'
471
+                    random walks
472
+Leading eigen       Densely connected subgraphs based     'community.leading_eigen'
473
+                    on the leading non-negative eigen-
474
+                    vector of the modularity matrix
475
+Betweeneess         Community structures detection        'community.edge_betweenness'
476
+                    via edge betweenness
477
+Greedy              Community structures via greedy       'community.fast_greedy'
478
+                    optimization of modularity
479
+------------------ -------------------------------------  -------------------------------------- 
480
+Table: Subpathway Options - COMMUNITY
481
+
482
+
483
+
484
+Type               Description                            R parameter
485
+------------------ -------------------------------------  -------------------------------------- 
486
+Cliques            A subgraph where every two distinct    'component.3-cliques'
487
+                   vertices in the clique are adjacent    ...
488
+                                                          'component.9-cliques'
489
+K-core             A maximal subgraph in which each       'component.3-coreness'
490
+                   vertex has at least degree k           ...
491
+                                                          'component.9-coreness'
492
+Max cliques       Largest of maximal cliques              'component.max_cliques'
493
+Components        All single components                   'component.decompose'
494
+------------------ -------------------------------------  -------------------------------------- 
495
+Table: Subpathway Options - COMPONENT
458 496
 
459
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
460
-
461
-data <- c(    
462
-'**Topological**', '', 
463
-'Forward and backward streams starting from',     
464
-                            "'fwd.cascade.topological.degree'",
465
-'genes/nodes with crucial topological role',     
466
-                            "'fwd.cascade.topological.betweenness'",
467
-'within the network',                                     
468
-                            "'fwd.cascade.topological.closeness'",
469
-'', "'fwd.cascade.topological.hub_score'",
470
-'', "'fwd.cascade.topological.eccentricity'",
471
-'', "'fwd.cascade.topological.page_rank'",
472
-'', "'fwd.cascade.topological.start_nodes'",
473
-'', "'bwd.cascade.topological.degree'",
474
-'', "'bwd.cascade.topological.betweenness'",
475
-'', "'bwd.cascade.topological.closeness'",
476
-'', "'bwd.cascade.topological.hub_score'",
477
-'', "'bwd.cascade.topological.eccentricity'",
478
-'', "'bwd.cascade.topological.page_rank'",
479
-'', "'bwd.cascade.topological.start_nodes'",
480
-'**Functional**', '', 
481
-'Forward and backward streams starting from',
482
-                                    "'fwd.cascade.functional.GO_bp'",
483
-'genes/nodes with crucial functional role',
484
-                                    "'fwd.cascade.functional.GO_cc'",
485
-'within the network',         
486
-                                    "'fwd.cascade.functional.GO_mf'",
487
-'',                       
488
-                                    "'fwd.cascade.functional.Disease_OMIM'",
489
-'', "'fwd.cascade.functional.Disease_GAD'",
490
-'', "'fwd.cascade.functional.Drug_DrugBank'",
491
-'', "'fwd.cascade.functional.miRNA'",
492
-'', "'fwd.cascade.functional.TF'",
493
-'', "'fwd.cascade.functional.KEGG'",
494
-'', "'fwd.cascade.functional.DEG'",
495
-'', "'bwd.cascade.functional.GO_bp'",
496
-'', "'bwd.cascade.functional.GOC_cc",
497
-'', "'bwd.cascade.functional.GO_mf'",
498
-'', "'bwd.cascade.functional.Disease_OMIM'",
499
-'', "'bwd.cascade.functional.Disease_GAD'",
500
-'', "'bwd.cascade.functional.Drug_DrugBank'",
501
-'', "'bwd.cascade.functional.miRNA'",
502
-'', "'bwd.cascade.functional.TF'",
503
-'', "'bwd.cascade.functional.KEGG'",
504
-'', "'bwd.cascade.functional.DEG'") 
505
-data <- matrix(data, nrow=36, ncol=2, byrow=TRUE)
506
-
507
-rownames(data) <- rep('', nrow(data))
508
-colnames(data) <- c('Desciption', 'R parameter')
509
-
510
-kable( data,
511
-    caption = 'Subpathway Options - CASCADE' )
512
-```
513
-
514
-
515
-
516
-
517
-
518
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
519
-
520
-data <- c(     
521
-'Random Walk', 'Community structures that minimize ', "'community.infomap'",
522
-'',             'the expected description length of',         "", 
523
-'',             'a random walker trajectory',             "", 
524
-'Modular', 'Community structures via a modularity ', "'community.louvain'",
525
-'',             'measure and a hierarchical approach',     "", 
526
-'Walktraps',     'Densely connected subgraphs via',  "'community.walktrap'",
527
-'',             'random walks', '',  
528
-'Leading eigen', 'Densely connected subgraphs based ',
529
-"'community.leading_eigen'",
530
-'',             'on the leading non-negative eigen-', '', 
531
-'',             'vector of the modularity matrix', '', 
532
-'Betweeneess','Community structures detection',"'community.edge_betweenness'",
533
-'',             'via edge betweenness', '',
534
-'Greedy', 'Community structures via greedy ', "'community.fast_greedy'",
535
-'',             'optimization of modularity', '') 
536
-
537
-data <- matrix(data, nrow=14, ncol=3, byrow=TRUE)
538
-
539
-rownames(data) <- rep('', nrow(data))
540
-colnames(data) <- c('Type', 'Desciption', 'R parameter')
541
-
542
-kable( data,
543
-    caption = 'Subpathway Options - COMMUNITY' )
544
-```
545
-
546
-
547
-
548
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
549
-
550
-data <- c('Cliques', 'A subgraph where every two distinct',
551
-"'component.3-cliques', ",
552
-'', 'vertices in the clique are adjacent', "     ....     ",
553
-'', '',  "'component.9-cliques', ",
554
-'K-core', 'A maximal subgraph in which each', "'component.3-coreness'",
555
-'', 'vertex has at least degree k', "     ....     ", 
556
-'', '', "'component.9-coreness'",
557
-'Max cliques', 'Largest of maximal cliques', "'component.max_cliques'",
558
-'Components', 'All single components', "'component.decompose'") 
559
-data <- matrix(data, nrow=8, ncol=3, byrow=TRUE)
560
-
561
-rownames(data) <- rep('', nrow(data))
562
-colnames(data) <- c('Type', 'Desciption', 'R parameter')
563
-
564
-kable( data,
565
-    caption = 'Subpathway Options - COMPONENT' )
566
-```
567 497
 
568 498
 
569 499
 An example follows where *community.walktrap* is selected as the 
... ...
@@ -585,15 +515,21 @@ DEsubs.run <- DEsubs(
585 515
 
586 516
 \newpage
587 517
 
588
-![Subpathway extraction options consist of five main categories. 
589
-The three of them (cascade, neighborhood, stream) are sub-categorized according
590
-to features (topological or functional) and the direction of propagation 
591
-(forward or backward) of the gene of interest where each subpathway is 
592
-starting. The other two (component, community) are sub-categorized according 
593
-to various topological properties.
594
-](figures/fig2.png "Schematic overview of subpathway options"){height=750px}
595 518
 
596 519
 
520
+```{r eval=TRUE, echo=FALSE, out.height='575px', fig.align='center', fig.cap=cap}
521
+
522
+cap <- paste0(
523
+    'Subpathway extraction options consist of five main categories. ', 
524
+    'The three of them (cascade, neighborhood, stream) are sub-categorized ', 
525
+    'according to features (topological or functional) and the direction of ',
526
+    'propagation (forward or backward) of the gene of interest where each ',
527
+    'subpathway is starting. The other two (component, community) are ',
528
+    'sub-categorized according to various topological properties.')
529
+
530
+knitr::include_graphics('figures/fig2.png')
531
+```
532
+
597 533
 
598 534
 ## 6. Subpathway enrichment analysis
599 535
 
... ...
@@ -639,20 +575,15 @@ Transcription Factor    Gene targetsof transcription    [@chen2013enrichr]
639 575
 Table: List of external databases
640 576
 
641 577
 
642
-```{r, eval=TRUE, echo=FALSE, results = 'asis'}
643
-
644
-data <- c(  'ACAD9', 'ACAD8', 'SH3GLB1', 'ESCO2', 'ESCO1', 'ADH1C', '"0"',
645
-            'ADH1C', 'ADH1B', 'ADHFE1', 'ADH1A', 'ADH6', 'ADH7', 'ADH4',
646
-            '...', '...', '...', '...', '...', '...', '...',
647
-            'PTPN1', 'RHOA', 'ACTN4', 'ACTN3', 'ACTN2', '"0"', '"0"')
648
-data <- matrix(data, nrow=4, ncol=7, byrow=TRUE)
578
+Term      Target 1  Target 2  Target 3  Target 4  Target 5  Target 6  Target 7 
579
+--------- --------- --------- --------- --------- --------- --------- --------- 
580
+Term 1    ACAD9     ACAD8     SH3GLB1   ESCO2     ESCO1     ADH1C     '0'
581
+Term 2    ADH1C     ADH1B     ADHFE1    ADH1A     ADH6      ADH7      ADH4
582
+...       ...       ...       ...       ...       ...       ...       ...              
583
+Term N    PTPN1     RHOA      ACTN4     ACTN3     ACTN2     '0'       '0'
584
+--------- --------- --------- --------- --------- --------- --------- --------- 
585
+Table:  Example of custom gene set
649 586
 
650
-rownames(data) <- c(paste0('Term ', 1:2), '...',  'Term N')
651
-colnames(data) <- paste0('Target ', 1:7)
652
-
653
-kable( data,
654
-    caption = 'Example of custom gene set' )
655
-```
656 587
 
657 588
 
658 589
 
... ...
@@ -664,26 +595,34 @@ kable( data,
664 595
 ## 7. Visualization
665 596
 
666 597
 DEsubs visualizes its results at a gene, subpathway and organism level through
667
-various schemes such as bar plots, heat maps, directed weighted graphs, z
668
-circular diagrams and dot plots. Indicative examples are illustrated in 
669
-figures 2-8 based on DEsubs executions using the human pathway network and 
670
-a synthetic dataset. Bar plots show the genes with the best Q-value from the 
671
-user-selected DE analysis tool (the user defines the desired gene number). 
672
-The figures are exported in the directory *Output* within the user specified 
673
-location. Heat maps show the genes with the highest values either in our 
674
-topological or functional measures (see Table 6).
675
-
676
-![Bar plots show the genes with the best Q-value from the user-selected 
677
-DE analysis tool (the user defines the desired gene number). Heat maps show 
678
-the genes with the highest values either in our topological or functional 
679
-measures (see Table 6). Each extracted subpathway is illustrated though a 
680
-directed graph by imprinting the degree of DE and correlation among the 
681
-respective gene members. Subpathway enrichment in association with biological 
682
-and pharmacological features (such as pathway terms, gene ontologies, 
683
-regulators, diseases and drug targets) is depicted through circular diagrams
684
-[@gu2014circlize]. 
685
-The total picture of the enriched subpathways is performed with dot plots. 
686
-](figures/fig3.png "Visualization overview."){height=500px}
598
+various schemes such as bar plots, heat maps, directed weighted graphs, 
599
+circular diagrams [@gu2014circlize] and dot plots. Indicative examples are 
600
+illustrated in figures 2-8 based on DEsubs executions using the human pathway 
601
+network and a synthetic dataset. Bar plots show the genes with the best Q-value 
602
+from the user-selected DE analysis tool (the user defines the desired gene 
603
+number). The figures are exported in the directory *Output* within the user 
604
+specified location. Heat maps show the genes with the highest values either 
605
+in our topological or functional measures (see Table 6).
606
+
607
+
608
+```{r eval=TRUE, echo=FALSE, out.height='385px', fig.align='center', fig.cap=cap, fig.pos='h', out.extra=''}
609
+
610
+cap <- paste0(
611
+    'Bar plots show the genes with the best Q-value from the user-selected ',
612
+    'DE analysis tool (the user defines the desired gene number). ',
613
+    'Heat maps show the genes with the highest values either in our ',
614
+    'topological or functional measures (see Table 6). ',
615
+    'Each extracted subpathway is illustrated though a directed graph by ',
616
+    'imprinting the degree of DE and correlation among the respective gene ',
617
+    'members. Subpathway enrichment in association with biological and ',
618
+    'pharmacological features (such as pathway terms, gene ontologies, ',
619
+    'regulators, diseases and drug targets) is depicted through circular ',
620
+    'diagrams. The total picture of the enriched subpathways is performed ', 
621
+    'with dot plots.')
622
+
623
+knitr::include_graphics('figures/fig3.png')
624
+```
625
+
687 626
 
688 627
 \newpage
689 628