library("KEGGgraph") library("rrcov") ## Create a random graph graph <- randomWAMGraph(nnodes=5, nedges=7, verbose=TRUE) plot(graph) ## Retrieve its adjacency matrix A <- graph@adjMat ## write it to KGML file grPathname <- "randomWAMGraph.xml" writeAdjacencyMatrix2KGML(A, pathname=grPathname, verbose=TRUE, overwrite=TRUE) ## read it from file gr <- parseKGML2Graph(grPathname) ## Two examples of Laplacians from the same graph lapMI <- laplacianFromA(A, ltype="meanInfluence") print(lapMI) lapN <- laplacianFromA(A, ltype="normalized") print(lapN) U <- lapN$U p <- nrow(A) sigma <- diag(p)/sqrt(p) X <- twoSampleFromGraph(100, 120, shiftM2=1, sigma, U=U, k=3) ## T2 t <- T2.test(X$X1,X$X2) str(t) tu <- graph.T2.test(X$X1, X$X2, lfA=lapMI, k=3) str(tu)