Browse code

remove old vignettes

jokergoo authored on 30/10/2018 12:52:23
Showing 1 changed files
1 1
deleted file mode 100644
... ...
@@ -1,117 +0,0 @@
1
-
2
-set.seed(888)
3
-
4
-type = c(rep("Tumor", 10), rep("Control", 10))
5
-gender = sample(c("F", "M"), 20, replace = TRUE)
6
-gender[sample(1:20, 2)] = NA
7
-age = runif(20, min = 30, max = 80)
8
-mutation = data.frame(mut1 = sample(c(TRUE, FALSE), 20, p = c(0.2, 0.8), replace = TRUE),
9
-    mut2 = sample(c(TRUE, FALSE), 20, p = c(0.3, 0.7), replace = TRUE))
10
-anno = data.frame(type = type, gender = gender, age = age, mutation, stringsAsFactors = FALSE) 
11
-
12
-######################################
13
-# generate methylation matrix
14
-rand_meth = function(k, mean) {
15
-    (runif(k) - 0.5)*min(c(1-mean), mean) + mean
16
-}
17
-
18
-mean_meth = c(rand_meth(300, 0.3), rand_meth(700, 0.7))
19
-mat_meth = as.data.frame(lapply(mean_meth, function(m) {
20
-    if(m < 0.3) {
21
-        c(rand_meth(10, m), rand_meth(10, m + 0.2))
22
-    } else if(m > 0.7) {
23
-        c(rand_meth(10, m), rand_meth(10, m - 0.2))
24
-    } else {
25
-        c(rand_meth(10, m), rand_meth(10, m + sample(c(1, -1), 1)*0.2))
26
-    }
27
-
28
-}))
29
-mat_meth = t(mat_meth)
30
-rownames(mat_meth) = NULL
31
-colnames(mat_meth) = paste0("sample", 1:20)
32
-
33
-######################################
34
-# generate directions for methylation
35
-direction = rowMeans(mat_meth[, 1:10]) - rowMeans(mat_meth[, 11:20])
36
-direction = ifelse(direction > 0, "hyper", "hypo")
37
-
38
-#######################################
39
-# generate expression matrix
40
-mat_expr = t(apply(mat_meth, 1, function(x) {
41
-    x = x + rnorm(length(x), sd = abs(runif(1)-0.5)*0.4 + 0.1)
42
-    -scale(x)
43
-}))
44
-dimnames(mat_expr) = dimnames(mat_meth)
45
-
46
-#############################################################
47
-# matrix for correlation between methylation and expression
48
-cor_pvalue = -log10(sapply(seq_len(nrow(mat_meth)), function(i) {
49
-    cor.test(mat_meth[i, ], mat_expr[i, ])$p.value
50
-}))
51
-
52
-#####################################################
53
-# matrix for types of genes
54
-gene_type = sample(c("protein_coding", "lincRNA", "microRNA", "psedo-gene", "others"), 
55
-    nrow(mat_meth), replace = TRUE, prob = c(6, 1, 1, 1, 1))
56
-
57
-#################################################
58
-# annotation to genes
59
-anno_gene = sapply(mean_meth, function(m) {
60
-    if(m > 0.6) {
61
-        if(runif(1) < 0.8) return("intragenic")
62
-    }
63
-    if(m < 0.4) {
64
-        if(runif(1) < 0.4) return("TSS")
65
-    }
66
-    return("intergenic")
67
-})
68
-
69
-############################################
70
-# distance to genes
71
-tss_dist = sapply(mean_meth, function(m) {
72
-    if(m < 0.3) {
73
-        if(runif(1) < 0.5) {
74
-            return(round( (runif(1) - 0.5)*1000 + 500))
75
-        } else {
76
-            return(round( (runif(1) - 0.5)*10000 + 500))
77
-        }
78
-    } else if(m < 0.6) {
79
-        if(runif(1) < 0.8) {
80
-            return(round( (runif(1)-0.5)*100000 + 50000 ))
81
-        } else {
82
-            return(round( (runif(1)-0.5)*1000000 + 500000 ))
83
-        }
84
-    }
85
-    return(round( (runif(1) - 0.5)*1000000 + 500000))    
86
-})
87
-
88
-
89
-#######################################
90
-# annotation to enhancers
91
-rand_tss = function(m) {
92
-    if(m < 0.4) {
93
-        if(runif(1) < 0.25) return(runif(1))
94
-    } else if (runif(1) < 0.1) {
95
-        return(runif(1))
96
-    } 
97
-    return(0)
98
-}
99
-rand_enhancer = function(m) {
100
-    if(m < 0.4) {
101
-        if(runif(1) < 0.6) return(runif(1))
102
-    } else if (runif(1) < 0.1) {
103
-        return(runif(1))
104
-    } 
105
-    return(0)
106
-}
107
-rand_repressive = function(m) {
108
-    if(m > 0.4) {
109
-        if(runif(1) < 0.8) return(runif(1))
110
-    }
111
-    return(0)
112
-}
113
-anno_states = data.frame(
114
-    tss = sapply(mean_meth, rand_tss), 
115
-    enhancer = sapply(mean_meth, rand_enhancer), 
116
-    rand_repressive = sapply(mean_meth, rand_repressive))
117
-
Browse code

a backup push

Zuguang Gu authored on 18/09/2018 10:40:29
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,117 @@
1
+
2
+set.seed(888)
3
+
4
+type = c(rep("Tumor", 10), rep("Control", 10))
5
+gender = sample(c("F", "M"), 20, replace = TRUE)
6
+gender[sample(1:20, 2)] = NA
7
+age = runif(20, min = 30, max = 80)
8
+mutation = data.frame(mut1 = sample(c(TRUE, FALSE), 20, p = c(0.2, 0.8), replace = TRUE),
9
+    mut2 = sample(c(TRUE, FALSE), 20, p = c(0.3, 0.7), replace = TRUE))
10
+anno = data.frame(type = type, gender = gender, age = age, mutation, stringsAsFactors = FALSE) 
11
+
12
+######################################
13
+# generate methylation matrix
14
+rand_meth = function(k, mean) {
15
+    (runif(k) - 0.5)*min(c(1-mean), mean) + mean
16
+}
17
+
18
+mean_meth = c(rand_meth(300, 0.3), rand_meth(700, 0.7))
19
+mat_meth = as.data.frame(lapply(mean_meth, function(m) {
20
+    if(m < 0.3) {
21
+        c(rand_meth(10, m), rand_meth(10, m + 0.2))
22
+    } else if(m > 0.7) {
23
+        c(rand_meth(10, m), rand_meth(10, m - 0.2))
24
+    } else {
25
+        c(rand_meth(10, m), rand_meth(10, m + sample(c(1, -1), 1)*0.2))
26
+    }
27
+
28
+}))
29
+mat_meth = t(mat_meth)
30
+rownames(mat_meth) = NULL
31
+colnames(mat_meth) = paste0("sample", 1:20)
32
+
33
+######################################
34
+# generate directions for methylation
35
+direction = rowMeans(mat_meth[, 1:10]) - rowMeans(mat_meth[, 11:20])
36
+direction = ifelse(direction > 0, "hyper", "hypo")
37
+
38
+#######################################
39
+# generate expression matrix
40
+mat_expr = t(apply(mat_meth, 1, function(x) {
41
+    x = x + rnorm(length(x), sd = abs(runif(1)-0.5)*0.4 + 0.1)
42
+    -scale(x)
43
+}))
44
+dimnames(mat_expr) = dimnames(mat_meth)
45
+
46
+#############################################################
47
+# matrix for correlation between methylation and expression
48
+cor_pvalue = -log10(sapply(seq_len(nrow(mat_meth)), function(i) {
49
+    cor.test(mat_meth[i, ], mat_expr[i, ])$p.value
50
+}))
51
+
52
+#####################################################
53
+# matrix for types of genes
54
+gene_type = sample(c("protein_coding", "lincRNA", "microRNA", "psedo-gene", "others"), 
55
+    nrow(mat_meth), replace = TRUE, prob = c(6, 1, 1, 1, 1))
56
+
57
+#################################################
58
+# annotation to genes
59
+anno_gene = sapply(mean_meth, function(m) {
60
+    if(m > 0.6) {
61
+        if(runif(1) < 0.8) return("intragenic")
62
+    }
63
+    if(m < 0.4) {
64
+        if(runif(1) < 0.4) return("TSS")
65
+    }
66
+    return("intergenic")
67
+})
68
+
69
+############################################
70
+# distance to genes
71
+tss_dist = sapply(mean_meth, function(m) {
72
+    if(m < 0.3) {
73
+        if(runif(1) < 0.5) {
74
+            return(round( (runif(1) - 0.5)*1000 + 500))
75
+        } else {
76
+            return(round( (runif(1) - 0.5)*10000 + 500))
77
+        }
78
+    } else if(m < 0.6) {
79
+        if(runif(1) < 0.8) {
80
+            return(round( (runif(1)-0.5)*100000 + 50000 ))
81
+        } else {
82
+            return(round( (runif(1)-0.5)*1000000 + 500000 ))
83
+        }
84
+    }
85
+    return(round( (runif(1) - 0.5)*1000000 + 500000))    
86
+})
87
+
88
+
89
+#######################################
90
+# annotation to enhancers
91
+rand_tss = function(m) {
92
+    if(m < 0.4) {
93
+        if(runif(1) < 0.25) return(runif(1))
94
+    } else if (runif(1) < 0.1) {
95
+        return(runif(1))
96
+    } 
97
+    return(0)
98
+}
99
+rand_enhancer = function(m) {
100
+    if(m < 0.4) {
101
+        if(runif(1) < 0.6) return(runif(1))
102
+    } else if (runif(1) < 0.1) {
103
+        return(runif(1))
104
+    } 
105
+    return(0)
106
+}
107
+rand_repressive = function(m) {
108
+    if(m > 0.4) {
109
+        if(runif(1) < 0.8) return(runif(1))
110
+    }
111
+    return(0)
112
+}
113
+anno_states = data.frame(
114
+    tss = sapply(mean_meth, rand_tss), 
115
+    enhancer = sapply(mean_meth, rand_enhancer), 
116
+    rand_repressive = sapply(mean_meth, rand_repressive))
117
+