1 | 1 |
deleted file mode 100644 |
... | ... |
@@ -1,34 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/calcCoGAPSStat.R |
|
3 |
-\name{calcCoGAPSStat} |
|
4 |
-\alias{calcCoGAPSStat} |
|
5 |
-\title{Calculate Gene Set Statistics} |
|
6 |
-\usage{ |
|
7 |
-calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{Amean}{A matrix mean values} |
|
11 |
- |
|
12 |
-\item{Asd}{A matrix standard deviations} |
|
13 |
- |
|
14 |
-\item{GStoGenes}{data.frame or list with gene sets} |
|
15 |
- |
|
16 |
-\item{numPerm}{number of permutations for null} |
|
17 |
-} |
|
18 |
-\value{ |
|
19 |
-gene set statistics for each column of A |
|
20 |
-} |
|
21 |
-\description{ |
|
22 |
-Calculate Gene Set Statistics |
|
23 |
-} |
|
24 |
-\details{ |
|
25 |
-calculates the gene set statistics for each |
|
26 |
-column of A using a Z-score from the elements of the A matrix, |
|
27 |
-the input gene set, and permutation tests |
|
28 |
-} |
|
29 |
-\examples{ |
|
30 |
-data('SimpSim') |
|
31 |
-calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, GStoGenes=GSets, |
|
32 |
-numPerm=500) |
|
33 |
-} |
|
34 |
- |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,34 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/calcCoGAPSStat.R |
|
3 |
+\name{calcCoGAPSStat} |
|
4 |
+\alias{calcCoGAPSStat} |
|
5 |
+\title{Calculate Gene Set Statistics} |
|
6 |
+\usage{ |
|
7 |
+calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
|
8 |
+} |
|
9 |
+\arguments{ |
|
10 |
+\item{Amean}{A matrix mean values} |
|
11 |
+ |
|
12 |
+\item{Asd}{A matrix standard deviations} |
|
13 |
+ |
|
14 |
+\item{GStoGenes}{data.frame or list with gene sets} |
|
15 |
+ |
|
16 |
+\item{numPerm}{number of permutations for null} |
|
17 |
+} |
|
18 |
+\value{ |
|
19 |
+gene set statistics for each column of A |
|
20 |
+} |
|
21 |
+\description{ |
|
22 |
+Calculate Gene Set Statistics |
|
23 |
+} |
|
24 |
+\details{ |
|
25 |
+calculates the gene set statistics for each |
|
26 |
+column of A using a Z-score from the elements of the A matrix, |
|
27 |
+the input gene set, and permutation tests |
|
28 |
+} |
|
29 |
+\examples{ |
|
30 |
+data('SimpSim') |
|
31 |
+calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, GStoGenes=GSets, |
|
32 |
+numPerm=500) |
|
33 |
+} |
|
34 |
+ |
1 | 1 |
deleted file mode 100644 |
... | ... |
@@ -1,34 +0,0 @@ |
1 |
-% Generated by roxygen2: do not edit by hand |
|
2 |
-% Please edit documentation in R/calcCoGAPSStat.R |
|
3 |
-\name{calcCoGAPSStat} |
|
4 |
-\alias{calcCoGAPSStat} |
|
5 |
-\title{Calculate Gene Set Statistics} |
|
6 |
-\usage{ |
|
7 |
-calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
|
8 |
-} |
|
9 |
-\arguments{ |
|
10 |
-\item{Amean}{A matrix mean values} |
|
11 |
- |
|
12 |
-\item{Asd}{A matrix standard deviations} |
|
13 |
- |
|
14 |
-\item{GStoGenes}{data.frame or list with gene sets} |
|
15 |
- |
|
16 |
-\item{numPerm}{number of permutations for null} |
|
17 |
-} |
|
18 |
-\value{ |
|
19 |
-gene set statistics for each column of A |
|
20 |
-} |
|
21 |
-\description{ |
|
22 |
-Calculate Gene Set Statistics |
|
23 |
-} |
|
24 |
-\details{ |
|
25 |
-calculates the gene set statistics for each |
|
26 |
-column of A using a Z-score from the elements of the A matrix, |
|
27 |
-the input gene set, and permutation tests |
|
28 |
-} |
|
29 |
-\examples{ |
|
30 |
-data('SimpSim') |
|
31 |
-calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, GStoGenes=GSets, |
|
32 |
-numPerm=500) |
|
33 |
-} |
|
34 |
- |
... | ... |
@@ -26,4 +26,9 @@ calculates the gene set statistics for each |
26 | 26 |
column of A using a Z-score from the elements of the A matrix, |
27 | 27 |
the input gene set, and permutation tests |
28 | 28 |
} |
29 |
+\examples{ |
|
30 |
+data('SimpSim') |
|
31 |
+calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, GStoGenes=GSets, |
|
32 |
+numPerm=500) |
|
33 |
+} |
|
29 | 34 |
|
... | ... |
@@ -26,11 +26,4 @@ calculates the gene set statistics for each |
26 | 26 |
column of A using a Z-score from the elements of the A matrix, |
27 | 27 |
the input gene set, and permutation tests |
28 | 28 |
} |
29 |
-\examples{ |
|
30 |
-# Load the sample data from CoGAPS |
|
31 |
-data(SimpSim) |
|
32 |
-# Run calcCoGAPSStat with the correct arguments from 'results' |
|
33 |
-calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
34 |
-GStoGenes=GSets, numPerm=500) |
|
35 |
-} |
|
36 | 29 |
|
... | ... |
@@ -15,20 +15,22 @@ calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
15 | 15 |
|
16 | 16 |
\item{numPerm}{number of permutations for null} |
17 | 17 |
} |
18 |
+\value{ |
|
19 |
+gene set statistics for each column of A |
|
20 |
+} |
|
18 | 21 |
\description{ |
19 | 22 |
Calculate Gene Set Statistics |
20 | 23 |
} |
21 | 24 |
\details{ |
22 | 25 |
calculates the gene set statistics for each |
23 |
- column of A using a Z-score from the elements of the A matrix, |
|
24 |
- the input gene set, and permutation tests |
|
26 |
+column of A using a Z-score from the elements of the A matrix, |
|
27 |
+the input gene set, and permutation tests |
|
25 | 28 |
} |
26 | 29 |
\examples{ |
27 |
-# Load the simulated data |
|
28 |
-data('SimpSim') |
|
29 |
-# Load the outputs from gapsRun |
|
30 |
-data('results') |
|
30 |
+# Load the sample data from CoGAPS |
|
31 |
+data(SimpSim) |
|
31 | 32 |
# Run calcCoGAPSStat with the correct arguments from 'results' |
32 |
-calcCoGAPSStat(results$Amean,results$Asd,GStoGenes=GSets,numPerm=500) |
|
33 |
+calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
34 |
+GStoGenes=GSets, numPerm=500) |
|
33 | 35 |
} |
34 | 36 |
|
... | ... |
@@ -2,9 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/calcCoGAPSStat.R |
3 | 3 |
\name{calcCoGAPSStat} |
4 | 4 |
\alias{calcCoGAPSStat} |
5 |
-\title{\code{calcCoGAPSStat} calculates the gene set statistics for each |
|
6 |
-column of A using a Z-score from the elements of the A matrix, |
|
7 |
-the input gene set, and permutation tests} |
|
5 |
+\title{Calculate Gene Set Statistics} |
|
8 | 6 |
\usage{ |
9 | 7 |
calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
10 | 8 |
} |
... | ... |
@@ -18,8 +16,11 @@ calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
18 | 16 |
\item{numPerm}{number of permutations for null} |
19 | 17 |
} |
20 | 18 |
\description{ |
21 |
-\code{calcCoGAPSStat} calculates the gene set statistics for each |
|
22 |
-column of A using a Z-score from the elements of the A matrix, |
|
23 |
-the input gene set, and permutation tests |
|
19 |
+Calculate Gene Set Statistics |
|
20 |
+} |
|
21 |
+\details{ |
|
22 |
+calculates the gene set statistics for each |
|
23 |
+ column of A using a Z-score from the elements of the A matrix, |
|
24 |
+ the input gene set, and permutation tests |
|
24 | 25 |
} |
25 | 26 |
|
... | ... |
@@ -22,4 +22,11 @@ calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
22 | 22 |
column of A using a Z-score from the elements of the A matrix, |
23 | 23 |
the input gene set, and permutation tests |
24 | 24 |
} |
25 |
- |
|
25 |
+\examples{ |
|
26 |
+# Load the simulated data |
|
27 |
+data('SimpSim') |
|
28 |
+# Load the outputs from gapsRun |
|
29 |
+data('results') |
|
30 |
+# Run calcCoGAPSStat with the correct arguments from 'results' |
|
31 |
+calcCoGAPSStat(results$Amean,results$Asd,GStoGenes=GSets,numPerm=500) |
|
32 |
+} |
... | ... |
@@ -1,36 +1,25 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/calcCoGAPSStat.R |
|
1 | 3 |
\name{calcCoGAPSStat} |
2 | 4 |
\alias{calcCoGAPSStat} |
3 |
-\title{CoGAPS gene set statistic} |
|
4 |
- |
|
5 |
-\description{ |
|
6 |
-Computes the p-value for the association of underlying patterns from microarray data to activity in gene sets.} |
|
7 |
- |
|
5 |
+\title{\code{calcCoGAPSStat} calculates the gene set statistics for each |
|
6 |
+column of A using a Z-score from the elements of the A matrix, |
|
7 |
+the input gene set, and permutation tests} |
|
8 | 8 |
\usage{ |
9 |
- calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm=500)} |
|
10 |
- |
|
11 |
-\arguments{ |
|
12 |
-\item{Amean}{Sampled mean value of the amplitude matrix \eqn{{{A}}}. \code{row.names(Amean)} must correspond to the gene names contained in GStoGenes.} |
|
13 |
-\item{Asd}{Sampled standard deviation of the amplitude matrix \eqn{{{A}}}.} |
|
14 |
-\item{GStoGenes}{List or data frame containing the genes in each gene set. If a list, gene set names are the list names and corresponding elements are the names of genes contained in each set. If a data frame, gene set names are in the first column and corresponding gene names are listed in rows beneath each gene set name.} |
|
15 |
-\item{numPerm}{Number of permuations used for the null distribution in the gene set statistic. (optional; default=500)} |
|
16 |
-} |
|
17 |
- |
|
18 |
-\details{ |
|
19 |
- This script links the patterns identified in the columns of \eqn{{P}} to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z-score for pattern \eqn{p} and gene set \eqn{G_{i}} containing \eqn{G} total genes is given by \deqn{Z_{i,p} = \frac{1}{G} \sum_{g in G_{i}}A_{gp} / \sigma_{gp}}, where \eqn{g} indexes the genes in the set and \eqn{\sigma_{gp}} is the standard deviation of \eqn{{{A}}_{gp}} obtained from MCMC sampling. CoGAPS then uses the specified \code{numPerm} random sample tests to compute a consistent p value estimate from that z score. |
|
9 |
+calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
|
20 | 10 |
} |
11 |
+\arguments{ |
|
12 |
+\item{Amean}{A matrix mean values} |
|
21 | 13 |
|
22 |
-\value{ |
|
23 |
- A list containing: |
|
24 |
- \item{GSUpreg}{p-values for upregulation of each gene set in each pattern.} |
|
25 |
- \item{GSDownreg}{p-values for downregulation of each gene set in each pattern.} |
|
26 |
- \item{GSActEst}{p-values for activity of each gene set in each pattern.} |
|
27 |
-} |
|
14 |
+\item{Asd}{A matrix standard deviations} |
|
28 | 15 |
|
29 |
-\author{Elana J. Fertig \email{ejfertig@jhmi.edu}} |
|
16 |
+\item{GStoGenes}{data.frame or list with gene sets} |
|
30 | 17 |
|
31 |
-\references{ |
|
32 |
-M.F. Ochs, L. Rink, C. Tarn, S. Mburu, T. Taguchi, B. Eisenberg, and A.K. Godwin. (2009) Detection and treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Research, 69:9125-9132. |
|
18 |
+\item{numPerm}{number of permutations for null} |
|
19 |
+} |
|
20 |
+\description{ |
|
21 |
+\code{calcCoGAPSStat} calculates the gene set statistics for each |
|
22 |
+column of A using a Z-score from the elements of the A matrix, |
|
23 |
+the input gene set, and permutation tests |
|
33 | 24 |
} |
34 | 25 |
|
35 |
-\seealso{\code{\link{CoGAPS}}} |
|
36 |
-\keyword{misc} |
git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/CoGAPS@94364 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -32,5 +32,5 @@ Computes the p-value for the association of underlying patterns from microarray |
32 | 32 |
M.F. Ochs, L. Rink, C. Tarn, S. Mburu, T. Taguchi, B. Eisenberg, and A.K. Godwin. (2009) Detection and treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Research, 69:9125-9132. |
33 | 33 |
} |
34 | 34 |
|
35 |
-\seealso{\code{\link{CoGAPS}}, \code{\link{GAPS}}} |
|
35 |
+\seealso{\code{\link{CoGAPS}}} |
|
36 | 36 |
\keyword{misc} |
git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/CoGAPS@68161 bc3139a8-67e5-0310-9ffc-ced21a209358
... | ... |
@@ -9,14 +9,14 @@ Computes the p-value for the association of underlying patterns from microarray |
9 | 9 |
calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm=500)} |
10 | 10 |
|
11 | 11 |
\arguments{ |
12 |
-\item{Amean}{Sampled mean value of the amplitude matrix \eqn{{\bf{A}}}. \code{row.names(Amean)} must correspond to the gene names contained in GStoGenes.} |
|
13 |
-\item{Asd}{Sampled standard deviation of the amplitude matrix \eqn{{\bf{A}}}.} |
|
12 |
+\item{Amean}{Sampled mean value of the amplitude matrix \eqn{{{A}}}. \code{row.names(Amean)} must correspond to the gene names contained in GStoGenes.} |
|
13 |
+\item{Asd}{Sampled standard deviation of the amplitude matrix \eqn{{{A}}}.} |
|
14 | 14 |
\item{GStoGenes}{List or data frame containing the genes in each gene set. If a list, gene set names are the list names and corresponding elements are the names of genes contained in each set. If a data frame, gene set names are in the first column and corresponding gene names are listed in rows beneath each gene set name.} |
15 | 15 |
\item{numPerm}{Number of permuations used for the null distribution in the gene set statistic. (optional; default=500)} |
16 | 16 |
} |
17 | 17 |
|
18 | 18 |
\details{ |
19 |
- This script links the patterns identified in the columns of \eqn{\bf{P}} to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z-score for pattern \eqn{p} and gene set \eqn{G_{i}} containing $G$ total genes is given by \deqn{Z_{i,p} = \frac{1}{G} \sum_{g in \mathcal{G_{i}}} {\frac{{\bf{A}_{gp}}}{\sigma_{gp}}},} where \eqn{g} indexes the genes in the set and \eqn{\sigma_{gp}} is the standard deviation of \eqn{{\bf{A}}_{gp}} obtained from MCMC sampling. CoGAPS then uses the specified \code{numPerm} random sample tests to compute a consistent p value estimate from that z score. |
|
19 |
+ This script links the patterns identified in the columns of \eqn{{P}} to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z-score for pattern \eqn{p} and gene set \eqn{G_{i}} containing \eqn{G} total genes is given by \deqn{Z_{i,p} = \frac{1}{G} \sum_{g in G_{i}}A_{gp} / \sigma_{gp}}, where \eqn{g} indexes the genes in the set and \eqn{\sigma_{gp}} is the standard deviation of \eqn{{{A}}_{gp}} obtained from MCMC sampling. CoGAPS then uses the specified \code{numPerm} random sample tests to compute a consistent p value estimate from that z score. |
|
20 | 20 |
} |
21 | 21 |
|
22 | 22 |
\value{ |
git-svn-id: https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/CoGAPS@48067 bc3139a8-67e5-0310-9ffc-ced21a209358
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,36 @@ |
1 |
+\name{calcCoGAPSStat} |
|
2 |
+\alias{calcCoGAPSStat} |
|
3 |
+\title{CoGAPS gene set statistic} |
|
4 |
+ |
|
5 |
+\description{ |
|
6 |
+Computes the p-value for the association of underlying patterns from microarray data to activity in gene sets.} |
|
7 |
+ |
|
8 |
+\usage{ |
|
9 |
+ calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm=500)} |
|
10 |
+ |
|
11 |
+\arguments{ |
|
12 |
+\item{Amean}{Sampled mean value of the amplitude matrix \eqn{{\bf{A}}}. \code{row.names(Amean)} must correspond to the gene names contained in GStoGenes.} |
|
13 |
+\item{Asd}{Sampled standard deviation of the amplitude matrix \eqn{{\bf{A}}}.} |
|
14 |
+\item{GStoGenes}{List or data frame containing the genes in each gene set. If a list, gene set names are the list names and corresponding elements are the names of genes contained in each set. If a data frame, gene set names are in the first column and corresponding gene names are listed in rows beneath each gene set name.} |
|
15 |
+\item{numPerm}{Number of permuations used for the null distribution in the gene set statistic. (optional; default=500)} |
|
16 |
+} |
|
17 |
+ |
|
18 |
+\details{ |
|
19 |
+ This script links the patterns identified in the columns of \eqn{\bf{P}} to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z-score for pattern \eqn{p} and gene set \eqn{G_{i}} containing $G$ total genes is given by \deqn{Z_{i,p} = \frac{1}{G} \sum_{g in \mathcal{G_{i}}} {\frac{{\bf{A}_{gp}}}{\sigma_{gp}}},} where \eqn{g} indexes the genes in the set and \eqn{\sigma_{gp}} is the standard deviation of \eqn{{\bf{A}}_{gp}} obtained from MCMC sampling. CoGAPS then uses the specified \code{numPerm} random sample tests to compute a consistent p value estimate from that z score. |
|
20 |
+} |
|
21 |
+ |
|
22 |
+\value{ |
|
23 |
+ A list containing: |
|
24 |
+ \item{GSUpreg}{p-values for upregulation of each gene set in each pattern.} |
|
25 |
+ \item{GSDownreg}{p-values for downregulation of each gene set in each pattern.} |
|
26 |
+ \item{GSActEst}{p-values for activity of each gene set in each pattern.} |
|
27 |
+} |
|
28 |
+ |
|
29 |
+\author{Elana J. Fertig \email{ejfertig@jhmi.edu}} |
|
30 |
+ |
|
31 |
+\references{ |
|
32 |
+M.F. Ochs, L. Rink, C. Tarn, S. Mburu, T. Taguchi, B. Eisenberg, and A.K. Godwin. (2009) Detection and treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Research, 69:9125-9132. |
|
33 |
+} |
|
34 |
+ |
|
35 |
+\seealso{\code{\link{CoGAPS}}, \code{\link{GAPS}}} |
|
36 |
+\keyword{misc} |