... | ... |
@@ -1,12 +1,12 @@ |
1 | 1 |
#' CoGAPS Matrix Factorization Algorithm |
2 | 2 |
#' |
3 | 3 |
#' @details calls the C++ MCMC code and performs Bayesian |
4 |
-#' matrix factorization returning the two matrices that reconstruct |
|
5 |
-#' the data matrix |
|
4 |
+#' matrix factorization returning the two matrices that reconstruct |
|
5 |
+#' the data matrix |
|
6 | 6 |
#' @param D data matrix |
7 | 7 |
#' @param S uncertainty matrix (std devs for chi-squared of Log Likelihood) |
8 | 8 |
#' @param nFactor number of patterns (basis vectors, metagenes), which must be |
9 |
-#' greater than or equal to the number of rows of FP |
|
9 |
+#' greater than or equal to the number of rows of FP |
|
10 | 10 |
#' @param nEquil number of iterations for burn-in |
11 | 11 |
#' @param nSample number of iterations for sampling |
12 | 12 |
#' @param nOutputs how often to print status into R by iterations |
... | ... |
@@ -16,16 +16,19 @@ |
16 | 16 |
#' @param maxGibbmassA limit truncated normal to max size |
17 | 17 |
#' @param maxGibbmassP limit truncated normal to max size |
18 | 18 |
#' @param seed a positive seed is used as-is, while any negative seed tells |
19 |
-#' the algorithm to pick a seed based on the current time |
|
19 |
+#' the algorithm to pick a seed based on the current time |
|
20 | 20 |
#' @param messages display progress messages |
21 | 21 |
#' @param singleCellRNASeq indicates if the data is single cell RNA-seq data |
22 | 22 |
#' @param whichMatrixFixed character to indicate whether A or P matric contains |
23 |
-#' the fixed patterns |
|
23 |
+#' the fixed patterns |
|
24 | 24 |
#' @param fixedPatterns matrix of fixed values in either A or P matrix |
25 | 25 |
#' @param checkpointInterval time (in seconds) between creating a checkpoint |
26 | 26 |
#' @param ... keeps backwards compatibility with arguments from older versions |
27 | 27 |
#' @return list with A and P matrix estimates |
28 | 28 |
#' @importFrom methods new |
29 |
+#' @examples |
|
30 |
+#' data(SimpSim) |
|
31 |
+#' result <- CoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nOutputs=250) |
|
29 | 32 |
#' @export |
30 | 33 |
CoGAPS <- function(D, S, nFactor=7, nEquil=1000, nSample=1000, nOutputs=1000, |
31 | 34 |
nSnapshots=0, alphaA=0.01, alphaP=0.01, maxGibbmassA=100, maxGibbmassP=100, |
... | ... |
@@ -59,9 +62,13 @@ fixedPatterns = matrix(0), checkpointInterval=0, ...) |
59 | 62 |
result <- cogaps_cpp(D, S, nFactor, nEquil, nEquil/10, nSample, nOutputs, |
60 | 63 |
nSnapshots, alphaA, alphaP, maxGibbmassA, maxGibbmassP, seed, messages, |
61 | 64 |
singleCellRNASeq, whichMatrixFixed, fixedPatterns, checkpointInterval) |
62 |
- |
|
63 |
- # backwards compatible with v2 |
|
64 |
- return(v2CoGAPS(result, ...)) |
|
65 |
+ |
|
66 |
+ patternNames <- paste('Patt', 1:nFactor, sep='') |
|
67 |
+ rownames(result$Amean) <- rownames(result$Asd) <- rownames(D) |
|
68 |
+ colnames(result$Amean) <- colnames(result$Asd) <- patternNames |
|
69 |
+ rownames(result$Pmean) <- rownames(result$Psd) <- patternNames |
|
70 |
+ colnames(result$Pmean) <- colnames(result$Psd) <- colnames(D) |
|
71 |
+ return(v2CoGAPS(result, ...)) # backwards compatible with v2 |
|
65 | 72 |
} |
66 | 73 |
|
67 | 74 |
#' Restart CoGAPS from Checkpoint File |
... | ... |
@@ -82,6 +89,9 @@ CoGapsFromCheckpoint <- function(D, S, path) |
82 | 89 |
#' |
83 | 90 |
#' @details displays information about how the package was compiled, i.e. which |
84 | 91 |
#' compiler/version was used, which compile time options were enabled, etc... |
92 |
+#' @return display builds information |
|
93 |
+#' @examples |
|
94 |
+#' CoGAPS::displayBuildReport() |
|
85 | 95 |
#' @export |
86 | 96 |
displayBuildReport <- function() |
87 | 97 |
{ |
... | ... |
@@ -116,10 +126,10 @@ numSnapshots=100, alphaA=0.01, nMaxA=100000, max_gibbmass_paraA=100.0, |
116 | 126 |
alphaP=0.01, nMaxP=100000, max_gibbmass_paraP=100.0, seed=-1, messages=TRUE) |
117 | 127 |
{ |
118 | 128 |
#warning('gapsRun is deprecated with v3.0, use CoGAPS') |
119 |
- CoGAPS(D, S, nFactor=nFactor, nEquil=nEquil, nSample=nSample, nOutputs=nOutR, |
|
120 |
- nSnapshots=ifelse(sampleSnapshots,numSnapshots,0), alphaA=alphaA, |
|
121 |
- alphaP=alphaP, maxGibbmassA=max_gibbmass_paraA, messages=messages, |
|
122 |
- maxGibbmassP=max_gibbmass_paraP, seed=seed) |
|
129 |
+ CoGAPS(D, S, nFactor=nFactor, nEquil=nEquil, nSample=nSample, |
|
130 |
+ nOutputs=nOutR, nSnapshots=ifelse(sampleSnapshots,numSnapshots,0), |
|
131 |
+ alphaA=alphaA, alphaP=alphaP, maxGibbmassA=max_gibbmass_paraA, |
|
132 |
+ messages=messages, maxGibbmassP=max_gibbmass_paraP, seed=seed) |
|
123 | 133 |
} |
124 | 134 |
|
125 | 135 |
#' Backwards Compatibility with v2 |
... | ... |
@@ -141,18 +151,35 @@ max_gibbmass_paraA=100.0, alphaP=0.01, nMaxP=100000, max_gibbmass_paraP=100.0, |
141 | 151 |
seed=-1, messages=TRUE) |
142 | 152 |
{ |
143 | 153 |
#warning('gapsMapRun is deprecated with v3.0, use CoGaps') |
144 |
- CoGAPS(D, S, nFactor=nFactor, nEquil=nEquil, nSample=nSample, nOutputs=nOutR, |
|
145 |
- nSnapshots=ifelse(sampleSnapshots,numSnapshots,0), alphaA=alphaA, |
|
146 |
- alphaP=alphaP, maxGibbmassA=max_gibbmass_paraA, messages=messages, |
|
147 |
- maxGibbmassP=max_gibbmass_paraP, seed=seed, whichMatrixFixed='P', |
|
148 |
- fixedPatterns=as.matrix(FP)) |
|
154 |
+ CoGAPS(D, S, nFactor=nFactor, nEquil=nEquil, nSample=nSample, |
|
155 |
+ nOutputs=nOutR, nSnapshots=ifelse(sampleSnapshots,numSnapshots,0), |
|
156 |
+ alphaA=alphaA, alphaP=alphaP, maxGibbmassA=max_gibbmass_paraA, |
|
157 |
+ messages=messages, maxGibbmassP=max_gibbmass_paraP, seed=seed, |
|
158 |
+ whichMatrixFixed='P', fixedPatterns=as.matrix(FP)) |
|
149 | 159 |
} |
150 | 160 |
|
161 |
+# helper function for backwards compatibility |
|
151 | 162 |
v2CoGAPS <- function(result, ...) |
152 | 163 |
{ |
153 | 164 |
if (!is.null(list(...)$GStoGenes)) |
154 | 165 |
{ |
155 |
- |
|
166 |
+ if (is.null(list(...)$plot) | list(...)$plot) |
|
167 |
+ { |
|
168 |
+ plotGAPS(result$Amean, result$Pmean) |
|
169 |
+ } |
|
170 |
+ if (is.null(list(...)$nPerm)) |
|
171 |
+ { |
|
172 |
+ nPerm <- 500 |
|
173 |
+ } |
|
174 |
+ else |
|
175 |
+ { |
|
176 |
+ nPerm <- list(...)$nPerm |
|
177 |
+ } |
|
178 |
+ GSP <- calcCoGAPSStat(result$Amean, result$Asd, list(...)$GStoGenes, |
|
179 |
+ nPerm) |
|
180 |
+ result <- list(meanChi2=result$meanChi2, Amean=result$Amean, |
|
181 |
+ Asd=result$Asd, Pmean=result$Pmean, Psd=result$Psd, |
|
182 |
+ GSUpreg=GSP$GSUpreg, GSDownreg=GSP$GSDownreg, GSActEst=GSP$GSActEst) |
|
156 | 183 |
} |
157 | 184 |
return(result) |
158 | 185 |
} |
159 | 186 |
\ No newline at end of file |
... | ... |
@@ -1,13 +1,12 @@ |
1 | 1 |
#' GWCoGAPS |
2 | 2 |
#' |
3 |
-#'\code{GWCoGAPS} calls the C++ MCMC code and performs Bayesian |
|
4 |
-#'matrix factorization returning the two matrices that reconstruct |
|
5 |
-#'the data matrix for whole genome data; |
|
6 |
-#' |
|
3 |
+#' @details calls the C++ MCMC code and performs Bayesian |
|
4 |
+#' matrix factorization returning the two matrices that reconstruct |
|
5 |
+#' the data matrix for whole genome data; |
|
7 | 6 |
#' @param D data matrix |
8 | 7 |
#' @param S uncertainty matrix (std devs for chi-squared of Log Likelihood) |
9 | 8 |
#' @param nFactor number of patterns (basis vectors, metagenes), which must be |
10 |
-#' greater than or equal to the number of rows of FP |
|
9 |
+#' greater than or equal to the number of rows of FP |
|
11 | 10 |
#' @param nSets number of sets for parallelization |
12 | 11 |
#' @param nCores number of cores for parallelization. If left to the default NA, nCores = nSets. |
13 | 12 |
#' @param saveBySetResults logical indicating whether to save by intermediary by set results. Default is FALSE. |
... | ... |
@@ -16,12 +15,13 @@ |
16 | 15 |
#' @param Cut number of branches at which to cut dendrogram used in patternMatch4Parallel |
17 | 16 |
#' @param minNS minimum of individual set contributions a cluster must contain |
18 | 17 |
#' @param ... additional parameters to be fed into \code{gapsRun} and \code{gapsMapRun} |
18 |
+#' @return list of A and P estimates |
|
19 | 19 |
#' @seealso \code{\link{gapsRun}}, \code{\link{patternMatch4Parallel}}, and \code{\link{gapsMapRun}} |
20 | 20 |
#' @examples |
21 |
-#' # Load the simulated data |
|
22 |
-#' data('SimpSim') |
|
21 |
+#' # Load the sample data from CoGAPS |
|
22 |
+#' data(SimpSim) |
|
23 | 23 |
#' # Run GWCoGAPS |
24 |
-#' GWCoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nSets=2, numSnapshots = 5) |
|
24 |
+#' GWCoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nSets=2) |
|
25 | 25 |
#' @export |
26 | 26 |
GWCoGAPS <- function(D, S, nFactor, nSets, nCores=NA, saveBySetResults=FALSE, |
27 | 27 |
fname="GWCoGAPS.AP.fixed", PatternsMatchFN = patternMatch4Parallel, Cut=NA, |
... | ... |
@@ -1,17 +1,18 @@ |
1 | 1 |
#' Binary Heatmap for Standardized A Matrix |
2 | 2 |
#' |
3 | 3 |
#' @details creates a binarized heatmap of the A matrix |
4 |
-#' in which the value is 1 if the value in Amean is greater than |
|
5 |
-#' threshold * Asd and 0 otherwise |
|
4 |
+#' in which the value is 1 if the value in Amean is greater than |
|
5 |
+#' threshold * Asd and 0 otherwise |
|
6 | 6 |
#' @param Amean the mean estimate for the A matrix |
7 | 7 |
#' @param Asd the standard deviations on Amean |
8 | 8 |
#' @param threshold the number of standard deviations above zero |
9 |
-#' that an element of Amean must be to get a value of 1 |
|
9 |
+#' that an element of Amean must be to get a value of 1 |
|
10 |
+#' @return plots a heatmap of the A Matrix |
|
10 | 11 |
#' @examples |
11 |
-#' # Load the outputs from gapsRun |
|
12 |
-#' data('results') |
|
12 |
+#' # Load the sample data from CoGAPS |
|
13 |
+#' data(SimpSim) |
|
13 | 14 |
#' # Run binaryA with the correct arguments from 'results' |
14 |
-#' binaryA(results$Amean,results$Asd,threshold=3) |
|
15 |
+#' binaryA(SimpSim.result$Amean, SimpSim.result$Asd, threshold=3) |
|
15 | 16 |
#' @export |
16 | 17 |
binaryA <-function(Amean, Asd, threshold=3) |
17 | 18 |
{ |
... | ... |
@@ -1,19 +1,19 @@ |
1 | 1 |
#' Calculate Gene Set Statistics |
2 | 2 |
#' |
3 | 3 |
#' @details calculates the gene set statistics for each |
4 |
-#' column of A using a Z-score from the elements of the A matrix, |
|
5 |
-#' the input gene set, and permutation tests |
|
4 |
+#' column of A using a Z-score from the elements of the A matrix, |
|
5 |
+#' the input gene set, and permutation tests |
|
6 | 6 |
#' @param Amean A matrix mean values |
7 | 7 |
#' @param Asd A matrix standard deviations |
8 | 8 |
#' @param GStoGenes data.frame or list with gene sets |
9 | 9 |
#' @param numPerm number of permutations for null |
10 |
+#' @return gene set statistics for each column of A |
|
10 | 11 |
#' @examples |
11 |
-#' # Load the simulated data |
|
12 |
-#' data('SimpSim') |
|
13 |
-#' # Load the outputs from gapsRun |
|
14 |
-#' data('results') |
|
12 |
+#' # Load the sample data from CoGAPS |
|
13 |
+#' data(SimpSim) |
|
15 | 14 |
#' # Run calcCoGAPSStat with the correct arguments from 'results' |
16 |
-#' calcCoGAPSStat(results$Amean,results$Asd,GStoGenes=GSets,numPerm=500) |
|
15 |
+#' calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
16 |
+#' GStoGenes=GSets, numPerm=500) |
|
17 | 17 |
#' @export |
18 | 18 |
calcCoGAPSStat <- function (Amean, Asd, GStoGenes, numPerm=500) |
19 | 19 |
{ |
... | ... |
@@ -1,21 +1,21 @@ |
1 | 1 |
#' Probability Gene Belongs in Gene Set |
2 | 2 |
#' |
3 | 3 |
#' @details calculates the probability that a gene |
4 |
-#' listed in a gene set behaves like other genes in the set within |
|
5 |
-#' the given data set |
|
4 |
+#' listed in a gene set behaves like other genes in the set within |
|
5 |
+#' the given data set |
|
6 | 6 |
#' @param Amean A matrix mean values |
7 | 7 |
#' @param Asd A matrix standard deviations |
8 | 8 |
#' @param GSGenes data.frame or list with gene sets |
9 | 9 |
#' @param numPerm number of permutations for null |
10 | 10 |
#' @param Pw weight on genes |
11 |
-#' @param nullGenes - logical indicating gene adjustment |
|
11 |
+#' @param nullGenes logical indicating gene adjustment |
|
12 |
+#' @return gene similiarity statistic |
|
12 | 13 |
#' @examples |
13 |
-#' # Load the simulated data |
|
14 |
+#' # Load the sample data from CoGAPS |
|
14 | 15 |
#' data('SimpSim') |
15 |
-#' # Load the outputs from gapsRun |
|
16 |
-#' data('results') |
|
17 | 16 |
#' # Run calcGeneGSStat with the correct arguments from 'results' |
18 |
-#' calcGeneGSStat(results$Amean,results$Asd,GSGenes=GSets[[1]],numPerm=500) |
|
17 |
+#' calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
18 |
+#' GSGenes=GSets[[1]], numPerm=500) |
|
19 | 19 |
#' @export |
20 | 20 |
calcGeneGSStat <- function(Amean, Asd, GSGenes, numPerm, Pw=rep(1,ncol(Amean)), |
21 | 21 |
nullGenes=FALSE) |
... | ... |
@@ -56,10 +56,10 @@ nullGenes=FALSE) |
56 | 56 |
#' Compute Gene Probability |
57 | 57 |
#' |
58 | 58 |
#' @details Computes the p-value for gene set membership using the CoGAPS-based |
59 |
-#' statistics developed in Fertig et al. (2012). This statistic refines set |
|
60 |
-#' membership for each candidate gene in a set specified in \code{GSGenes} by |
|
61 |
-#' comparing the inferred activity of that gene to the average activity of the |
|
62 |
-#' set. |
|
59 |
+#' statistics developed in Fertig et al. (2012). This statistic refines set |
|
60 |
+#' membership for each candidate gene in a set specified in \code{GSGenes} by |
|
61 |
+#' comparing the inferred activity of that gene to the average activity of the |
|
62 |
+#' set. |
|
63 | 63 |
#' @param Amean A matrix mean values |
64 | 64 |
#' @param Asd A matrix standard deviations |
65 | 65 |
#' @param GSGenes data.frame or list with gene sets |
... | ... |
@@ -67,7 +67,13 @@ nullGenes=FALSE) |
67 | 67 |
#' @param numPerm number of permutations for null |
68 | 68 |
#' @param PwNull - logical indicating gene adjustment |
69 | 69 |
#' @return A vector of length GSGenes containing the p-values of set membership |
70 |
-#' for each gene containined in the set specified in GSGenes. |
|
70 |
+#' for each gene containined in the set specified in GSGenes. |
|
71 |
+#' @examples |
|
72 |
+#' # Load the sample data from CoGAPS |
|
73 |
+#' data('SimpSim') |
|
74 |
+#' # Run calcGeneGSStat with the correct arguments from 'results' |
|
75 |
+#' calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
76 |
+#' GSGenes=GSets[[1]], numPerm=500) |
|
71 | 77 |
#' @export |
72 | 78 |
computeGeneGSProb <- function(Amean, Asd, GSGenes, Pw=rep(1,ncol(Amean)), |
73 | 79 |
numPerm=500, PwNull=FALSE) |
... | ... |
@@ -1,37 +1,23 @@ |
1 | 1 |
#' Compute Z-Score Matrix |
2 | 2 |
#' |
3 | 3 |
#' @details calculates the Z-score for each element based on input mean |
4 |
-#' and standard deviation matrices |
|
4 |
+#' and standard deviation matrices |
|
5 | 5 |
#' @param meanMat matrix of mean values |
6 | 6 |
#' @param sdMat matrix of standard deviation values |
7 |
+#' @return matrix of z-scores |
|
7 | 8 |
#' @examples |
8 |
-#' # Load the simulated data |
|
9 |
-#' data('SimpSim') |
|
9 |
+#' # Load the sample data from CoGAPS |
|
10 |
+#' data(SimpSim) |
|
10 | 11 |
#' # Run calcZ |
11 |
-#' calcZ(SimpSim.D,SimpSim.S) |
|
12 |
+#' calcZ(SimpSim.result$Amean, SimpSim.result$Asd) |
|
12 | 13 |
#' @export |
13 | 14 |
calcZ <- function(meanMat, sdMat) |
14 | 15 |
{ |
15 |
- # find matrix dimensions |
|
16 |
- nrows <- dim(meanMat)[1] |
|
17 |
- ncols <- dim(meanMat)[2] |
|
16 |
+ if (nrow(meanMat) != nrow(sdMat) | ncol(meanMat) != ncol(sdMat)) |
|
17 |
+ stop("meanMat and sdMat dimensions don't match") |
|
18 | 18 |
|
19 |
- check <- dim(sdMat)[1] |
|
20 |
- if (nrows != check) |
|
21 |
- { |
|
22 |
- stop("Number of rows in the mean and standard deviation of A do not agree.") |
|
23 |
- } |
|
24 |
- |
|
25 |
- check <- dim(sdMat)[2] |
|
26 |
- if (ncols != check) |
|
27 |
- { |
|
28 |
- stop("Number of columns in the mean and standard deviation of A do not agree.") |
|
29 |
- } |
|
30 |
- |
|
31 |
- # compute the matrix of z scores |
|
32 |
- zMat <- meanMat/sdMat |
|
19 |
+ zMat <- meanMat / sdMat |
|
33 | 20 |
rownames(zMat) <- rownames(meanMat) |
34 | 21 |
colnames(zMat) <- colnames(meanMat) |
35 |
- |
|
36 | 22 |
return(zMat) |
37 | 23 |
} |
... | ... |
@@ -8,10 +8,10 @@ |
8 | 8 |
#' @param keep logical indicating whether or not to save gene set list. |
9 | 9 |
#' @return list with randomly generated sets of genes from whole genome data |
10 | 10 |
#' @examples |
11 |
-#' # Load the simulated data |
|
12 |
-#' data('SimpSim') |
|
11 |
+#' # Load the sample data from CoGAPS |
|
12 |
+#' data(SimpSim) |
|
13 | 13 |
#' # Run createGWCoGAPSSets |
14 |
-#' createGWCoGAPSSets(SimpSim.D,nSets=2) |
|
14 |
+#' createGWCoGAPSSets(SimpSim.D, nSets=2) |
|
15 | 15 |
#' @export |
16 | 16 |
createGWCoGAPSSets<-function(data=D, nSets=nSets, |
17 | 17 |
outRDA="GenesInCoGAPSSets.Rda", keep=TRUE) |
... | ... |
@@ -1,6 +1,5 @@ |
1 | 1 |
#Calculates significant genes in each pattern according to certain threshold |
2 | 2 |
#Returns the significant gene names as well as well as the correlation matrices between these genes and the means of these matrices |
3 |
- |
|
4 | 3 |
gapsIntraPattern <- function(Amean, Asd, DMatrix, sdThreshold = 3) |
5 | 4 |
{ |
6 | 5 |
#number of rows and cols of Asd |
... | ... |
@@ -2,11 +2,11 @@ |
2 | 2 |
#' |
3 | 3 |
#' @param chains number of seeds to generate (number of chains to run) |
4 | 4 |
#' @param seed positive values are kept, negative values will be overwritten |
5 |
-#' by a seed generated from the current time |
|
5 |
+#' by a seed generated from the current time |
|
6 | 6 |
#' @return vector of randomly generated seeds |
7 |
-#' @export |
|
8 | 7 |
#' @examples |
9 |
-#' generateSeeds(chains=2, seed=-1) |
|
8 |
+#' seeds <- generateSeeds(chains=2, seed=-1) |
|
9 |
+#' @export |
|
10 | 10 |
generateSeeds <- function(chains=2, seed=-1) |
11 | 11 |
{ |
12 | 12 |
if (chains < 2 || (as.integer(chains) != chains)) |
... | ... |
@@ -9,8 +9,8 @@ |
9 | 9 |
#' @return By default a non-overlapping list of genes associated with each \code{lp}. If \code{full=TRUE} a data.frame of |
10 | 10 |
#' genes rankings with a column for each \code{lp} will also be returned. |
11 | 11 |
#' @examples |
12 |
-#' # Load the outputs from gapsRun |
|
13 |
-#' data('results') |
|
12 |
+#' # Load the sample data from CoGAPS |
|
13 |
+#' data(SimpSim) |
|
14 | 14 |
#' # Run patternMarkers with the correct arguments from 'results' |
15 | 15 |
#' patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
16 | 16 |
#' Pmatrix=results$Pmean,threshold="all",full=TRUE) |
... | ... |
@@ -8,7 +8,6 @@ |
8 | 8 |
#' @param ignore.NA logical indicating whether or not to ignore NAs from potential over dimensionalization. Default is FALSE. |
9 | 9 |
#' @param bySet logical indicating whether to return list of matched set solutions from \code{Ptot} |
10 | 10 |
#' @param ... additional parameters for \code{agnes} |
11 |
-#' |
|
12 | 11 |
#' @return a matrix of concensus patterns by samples. If \code{bySet=TRUE} then a list of the set contributions to each |
13 | 12 |
#' concensus pattern is also returned. |
14 | 13 |
#' @export |
... | ... |
@@ -4,158 +4,149 @@ |
4 | 4 |
#' @param out optional name for saving output |
5 | 5 |
#' @param order optional vector indicating order of samples for plotting. Default is NULL. |
6 | 6 |
#' @param sample.color optional vector of colors of same length as colnames. Default is NULL. |
7 |
-#' |
|
8 | 7 |
#' @return either an index of selected sets' contributions or the editted \code{PBySet} object |
9 | 8 |
#' @export |
10 |
-#' |
|
11 |
-#' @examples \dontrun{ |
|
12 |
-#' patternMatcher(PBySet,out,order,sample.color) |
|
13 |
-#' } |
|
14 |
-#' |
|
15 |
-#' |
|
16 |
-patternMatcher<-function(PBySet=NULL,out=NULL,order=NULL, sample.color=NULL) { |
|
17 |
- |
|
18 |
-runApp(list( |
|
19 |
- ui = pageWithSidebar( |
|
20 |
- # Application title |
|
21 |
- headerPanel('NMF Pattern Matching'), |
|
22 |
- # Side pannel with controls |
|
23 |
- sidebarPanel( |
|
24 |
- # to upload file |
|
25 |
- fileInput('file1', |
|
26 |
- 'Choose .Rda File', |
|
27 |
- accept=c('.RData','.Rda','R data object','.rda') |
|
28 |
- ), |
|
29 |
- # |
|
30 |
- uiOutput("pickplot"), |
|
31 |
- uiOutput("checkbs"), |
|
32 |
- downloadButton('downloadData', 'Download'), |
|
33 |
- actionButton("end", "Return") |
|
34 |
- ), |
|
35 |
- # Main panel with plots |
|
36 |
- mainPanel( |
|
37 |
- plotOutput('plot1') |
|
38 |
- ) |
|
39 |
- ), |
|
40 |
- |
|
41 |
- server = function(input, output, session) { |
|
42 |
- #load in the data |
|
43 |
- df<-reactive({ |
|
44 |
- if(!is.null(PBySet)){ |
|
45 |
- df<-PBySet |
|
46 |
- return(df) |
|
47 |
- } |
|
48 |
- inFile <- input$file1 # get the path to the input file on the server |
|
49 |
- if (is.null(inFile)){return(NULL)} |
|
50 |
- load(inFile$datapath) #load it |
|
51 |
- df <- get(load(inFile$datapath))# get the name of the object that was loaded |
|
52 |
- return(df) |
|
53 |
- }) |
|
54 |
- |
|
55 |
- # get data name |
|
56 |
- datName<-reactive({ |
|
57 |
- if(!is.null(out)){ |
|
58 |
- datName<-paste(out,'.SelectedPatterns.Rda',sep="") |
|
59 |
- return(datName) |
|
60 |
- } |
|
61 |
- inFile <- input$file1 |
|
62 |
- if (is.null(inFile) & is.null(out)){ |
|
63 |
- datName<-"SelectedPatterns.Rda" |
|
64 |
- return(datName) |
|
65 |
- } |
|
66 |
- if (is.null(inFile)){return(NULL)} |
|
67 |
- fn<-strsplit(inFile$name,"[.]")[[1]][1] |
|
68 |
- datName<-paste(fn,'.SelectedPatterns.Rda',sep="") |
|
69 |
- return(datName) |
|
70 |
- }) |
|
71 |
- |
|
72 |
- |
|
73 |
- mdf=reactive({# use that to give options for subsetting, some formatting may need to be removed |
|
74 |
- dfx=df() |
|
75 |
- if (is.null(dfx)){return(NULL)} |
|
76 |
- mdf=melt(dfx,stringsAsFactors=FALSE) # melt the elements of the list |
|
77 |
- colnames(mdf)<-c("BySet","Samples","value","Patterns") |
|
78 |
- mdf$BySet<-as.character(mdf$BySet) # change them to characters |
|
79 |
- mdf$Samples<-as.character(mdf$Samples) |
|
80 |
- mdf$value=as.numeric(mdf$value) #make sure value is numeric for plotting |
|
81 |
- str(mdf) |
|
82 |
- return(mdf) |
|
83 |
- }) |
|
84 |
- |
|
85 |
- |
|
86 |
- output$pickplot <- renderUI({# menu to select which matrix to look at/edit |
|
87 |
- if (is.null(df())){return(NULL)} |
|
88 |
- mdf2=mdf() |
|
89 |
- selectInput("whichplot", "Select the Pattern to Plot",choices=unique(mdf2$Patterns)) |
|
90 |
- }) |
|
91 |
- |
|
92 |
- |
|
93 |
- output$checkbs <- renderUI({# make the checkboxes for each row of each matrix |
|
94 |
- if (is.null(df())){return(NULL)} |
|
95 |
- mdf2=mdf() |
|
96 |
- lapply(unique(mdf2$Patterns), function(i) { |
|
97 |
- subss <- unique(mdf2$BySet[mdf2$Patterns==i]) # find the rows (after it has been melted) |
|
98 |
- tmp=sprintf("input.whichplot == %g", i) # create the javascript code to make this a conditional panel |
|
99 |
- conditionalPanel( |
|
100 |
- condition = tmp, |
|
101 |
- checkboxGroupInput(paste("subs",i,sep=""), i, choices=subss, selected=subss) # the actual checkboxes for each, subs1, subs2, subsn |
|
102 |
- ) |
|
103 |
- }) |
|
104 |
- }) |
|
105 |
- |
|
106 |
- |
|
107 |
- output$plot1 <- renderPlot({#plot the data, subset to the desired columns |
|
108 |
- # if there has not been an uploaded matrix yet, don't even try to make a plot |
|
109 |
- if (is.null(df())){return(NULL)} |
|
110 |
- if (is.null(input$whichplot)){return(NULL)} |
|
111 |
- par(mar = c(5.1, 4.1, 0, 1)) |
|
112 |
- mdf2=mdf() # grab the melted data frame to use the ggplot2 plot |
|
113 |
- x=input$whichplot # which matrix to show |
|
114 |
- x=as.numeric(x) |
|
115 |
- tmp=input[[paste("subs",x,sep="")]] # get the rows that have been selected |
|
116 |
- mdf2x=mdf2[which(mdf2$BySet%in%tmp),] |
|
117 |
- if (!is.null(order) & !is.null(sample.color)){ |
|
118 |
- ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
119 |
- geom_line() + scale_x_discrete(limits=order) + |
|
120 |
- theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1,colour = sample.color)) |
|
121 |
- } else if(!is.null(sample.color) & is.null(order)) { |
|
122 |
- ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
123 |
- geom_line() + |
|
124 |
- theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1,colour = sample.color)) |
|
125 |
- } else if(!is.null(order) & is.null(sample.color) ) { |
|
126 |
- ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
127 |
- geom_line() + scale_x_discrete(limits=order) + |
|
128 |
- theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1)) |
|
129 |
- } else { |
|
130 |
- ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
131 |
- geom_line() + |
|
132 |
- theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1)) |
|
133 |
- } |
|
134 |
- #pplot |
|
135 |
- #browser() |
|
136 |
- }) |
|
137 |
- |
|
138 |
- # create and download the final result file |
|
139 |
- output$downloadData <- downloadHandler( |
|
140 |
- filename = datName(), # set the file name |
|
141 |
- content = function(file) { |
|
142 |
- PatternsSelect <- lapply(1:length(mdf()), function(i) {input[[paste("subs",i,sep="")]]}) |
|
143 |
- save(PatternsSelect, file=file) # generate the object to save |
|
144 |
- } |
|
145 |
- ) |
|
146 |
- #stop app and return to R |
|
147 |
- observeEvent(input$end, { |
|
148 |
- mdf2=mdf() |
|
149 |
- PatternsSelect <- sapply(1:length(df()), function(i) {input[[paste("subs",i,sep="")]]}) |
|
150 |
- selectPBySet <- mdf2[which(mdf2$BySet%in%PatternsSelect),] |
|
151 |
- stopApp(returnValue = selectPBySet) |
|
152 |
- }) |
|
153 |
- |
|
154 |
- |
|
155 |
- |
|
156 |
- } |
|
157 |
- |
|
158 |
-) |
|
159 |
-) |
|
160 |
- |
|
9 |
+patternMatcher<-function(PBySet=NULL,out=NULL,order=NULL, sample.color=NULL) |
|
10 |
+{ |
|
11 |
+ runApp(list( |
|
12 |
+ ui = pageWithSidebar( |
|
13 |
+ # Application title |
|
14 |
+ headerPanel('NMF Pattern Matching'), |
|
15 |
+ # Side pannel with controls |
|
16 |
+ sidebarPanel( |
|
17 |
+ # to upload file |
|
18 |
+ fileInput('file1', 'Choose .Rda File', |
|
19 |
+ accept=c('.RData','.Rda','R data object','.rda')), |
|
20 |
+ uiOutput("pickplot"), |
|
21 |
+ uiOutput("checkbs"), |
|
22 |
+ downloadButton('downloadData', 'Download'), |
|
23 |
+ actionButton("end", "Return") |
|
24 |
+ ), |
|
25 |
+ # Main panel with plots |
|
26 |
+ mainPanel(plotOutput('plot1')) |
|
27 |
+ ), |
|
28 |
+ |
|
29 |
+ server = function(input, output, session) |
|
30 |
+ { |
|
31 |
+ #load in the data |
|
32 |
+ df<-reactive({ |
|
33 |
+ if(!is.null(PBySet)) |
|
34 |
+ { |
|
35 |
+ df<-PBySet |
|
36 |
+ return(df) |
|
37 |
+ } |
|
38 |
+ inFile <- input$file1 # get the path to the input file on the server |
|
39 |
+ if (is.null(inFile)){return(NULL)} |
|
40 |
+ load(inFile$datapath) #load it |
|
41 |
+ df <- get(load(inFile$datapath))# get the name of the object that was loaded |
|
42 |
+ return(df) |
|
43 |
+ }) |
|
44 |
+ |
|
45 |
+ # get data name |
|
46 |
+ datName<-reactive({ |
|
47 |
+ if(!is.null(out)) |
|
48 |
+ { |
|
49 |
+ datName<-paste(out,'.SelectedPatterns.Rda',sep="") |
|
50 |
+ return(datName) |
|
51 |
+ } |
|
52 |
+ inFile <- input$file1 |
|
53 |
+ if (is.null(inFile) & is.null(out)) |
|
54 |
+ { |
|
55 |
+ datName<-"SelectedPatterns.Rda" |
|
56 |
+ return(datName) |
|
57 |
+ } |
|
58 |
+ if (is.null(inFile)){return(NULL)} |
|
59 |
+ fn<-strsplit(inFile$name,"[.]")[[1]][1] |
|
60 |
+ datName<-paste(fn,'.SelectedPatterns.Rda',sep="") |
|
61 |
+ return(datName) |
|
62 |
+ }) |
|
63 |
+ |
|
64 |
+ |
|
65 |
+ mdf=reactive({# use that to give options for subsetting, some formatting may need to be removed |
|
66 |
+ dfx=df() |
|
67 |
+ if (is.null(dfx)){return(NULL)} |
|
68 |
+ mdf=melt(dfx,stringsAsFactors=FALSE) # melt the elements of the list |
|
69 |
+ colnames(mdf)<-c("BySet","Samples","value","Patterns") |
|
70 |
+ mdf$BySet<-as.character(mdf$BySet) # change them to characters |
|
71 |
+ mdf$Samples<-as.character(mdf$Samples) |
|
72 |
+ mdf$value=as.numeric(mdf$value) #make sure value is numeric for plotting |
|
73 |
+ str(mdf) |
|
74 |
+ return(mdf) |
|
75 |
+ }) |
|
76 |
+ |
|
77 |
+ |
|
78 |
+ output$pickplot <- renderUI({# menu to select which matrix to look at/edit |
|
79 |
+ if (is.null(df())){return(NULL)} |
|
80 |
+ mdf2=mdf() |
|
81 |
+ selectInput("whichplot", "Select the Pattern to Plot",choices=unique(mdf2$Patterns)) |
|
82 |
+ }) |
|
83 |
+ |
|
84 |
+ output$checkbs <- renderUI({# make the checkboxes for each row of each matrix |
|
85 |
+ if (is.null(df())){return(NULL)} |
|
86 |
+ mdf2=mdf() |
|
87 |
+ lapply(unique(mdf2$Patterns), function(i) { |
|
88 |
+ subss <- unique(mdf2$BySet[mdf2$Patterns==i]) # find the rows (after it has been melted) |
|
89 |
+ tmp=sprintf("input.whichplot == %g", i) # create the javascript code to make this a conditional panel |
|
90 |
+ conditionalPanel( |
|
91 |
+ condition = tmp, |
|
92 |
+ checkboxGroupInput(paste("subs",i,sep=""), i, choices=subss, selected=subss) # the actual checkboxes for each, subs1, subs2, subsn |
|
93 |
+ ) |
|
94 |
+ }) |
|
95 |
+ }) |
|
96 |
+ |
|
97 |
+ |
|
98 |
+ output$plot1 <- renderPlot({#plot the data, subset to the desired columns |
|
99 |
+ # if there has not been an uploaded matrix yet, don't even try to make a plot |
|
100 |
+ if (is.null(df())){return(NULL)} |
|
101 |
+ if (is.null(input$whichplot)){return(NULL)} |
|
102 |
+ par(mar = c(5.1, 4.1, 0, 1)) |
|
103 |
+ mdf2=mdf() # grab the melted data frame to use the ggplot2 plot |
|
104 |
+ x=input$whichplot # which matrix to show |
|
105 |
+ x=as.numeric(x) |
|
106 |
+ tmp=input[[paste("subs",x,sep="")]] # get the rows that have been selected |
|
107 |
+ mdf2x=mdf2[which(mdf2$BySet%in%tmp),] |
|
108 |
+ if (!is.null(order) & !is.null(sample.color)) |
|
109 |
+ { |
|
110 |
+ ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
111 |
+ geom_line() + scale_x_discrete(limits=order) + |
|
112 |
+ theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1,colour = sample.color)) |
|
113 |
+ } |
|
114 |
+ else if(!is.null(sample.color) & is.null(order)) |
|
115 |
+ { |
|
116 |
+ ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
117 |
+ geom_line() + |
|
118 |
+ theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1,colour = sample.color)) |
|
119 |
+ } |
|
120 |
+ else if(!is.null(order) & is.null(sample.color) ) |
|
121 |
+ { |
|
122 |
+ ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
123 |
+ geom_line() + scale_x_discrete(limits=order) + |
|
124 |
+ theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1)) |
|
125 |
+ } |
|
126 |
+ else |
|
127 |
+ { |
|
128 |
+ ggplot(mdf2x, aes(x=Samples, y=value, col=BySet,group=BySet))+ |
|
129 |
+ geom_line() + |
|
130 |
+ theme(axis.text.x = element_text(angle=45,family="Helvetica-Narrow", hjust = 1)) |
|
131 |
+ } |
|
132 |
+ }) |
|
133 |
+ |
|
134 |
+ # create and download the final result file |
|
135 |
+ output$downloadData <- downloadHandler( |
|
136 |
+ filename = datName(), # set the file name |
|
137 |
+ content = function(file) { |
|
138 |
+ PatternsSelect <- lapply(1:length(mdf()), function(i) {input[[paste("subs",i,sep="")]]}) |
|
139 |
+ save(PatternsSelect, file=file) # generate the object to save |
|
140 |
+ } |
|
141 |
+ ) |
|
142 |
+ |
|
143 |
+ #stop app and return to R |
|
144 |
+ observeEvent(input$end, { |
|
145 |
+ mdf2=mdf() |
|
146 |
+ PatternsSelect <- sapply(1:length(df()), function(i) {input[[paste("subs",i,sep="")]]}) |
|
147 |
+ selectPBySet <- mdf2[which(mdf2$BySet%in%PatternsSelect),] |
|
148 |
+ stopApp(returnValue = selectPBySet) |
|
149 |
+ }) |
|
150 |
+ } |
|
151 |
+ )) |
|
161 | 152 |
} |
162 | 153 |
\ No newline at end of file |
... | ... |
@@ -1,14 +1,15 @@ |
1 | 1 |
#' Plot Number of Atoms |
2 | 2 |
#' |
3 | 3 |
#' @details a simple plot of the number of atoms |
4 |
-#' from one of the vectors returned with atom numbers |
|
4 |
+#' from one of the vectors returned with atom numbers |
|
5 | 5 |
#' @param gapsRes the list resulting from applying GAPS |
6 | 6 |
#' @param type the atoms to plot, values are "sampA", "sampP" , |
7 |
-#' "equilA", or "equilP" to plot sampling or equilibration teop |
|
8 |
-#' atom numbers |
|
7 |
+#' "equilA", or "equilP" to plot sampling or equilibration teop |
|
8 |
+#' atom numbers |
|
9 |
+#' @return plot |
|
9 | 10 |
#' @examples |
10 |
-#' # Load the outputs from gapsRun |
|
11 |
-#' data('results') |
|
11 |
+#' # Load the sample data from CoGAPS |
|
12 |
+#' data(SimpSim) |
|
12 | 13 |
#' # Run plotAtoms |
13 | 14 |
#' plotAtoms(results,type="sampA") |
14 | 15 |
#'@export |
... | ... |
@@ -2,11 +2,12 @@ |
2 | 2 |
#' |
3 | 3 |
#' @details plots a series of diagnostic plots |
4 | 4 |
#' @param gapsRes list returned by CoGAPS |
5 |
+#' @return plot |
|
5 | 6 |
#' @examples |
6 |
-#' # Load the outputs from gapsRun |
|
7 |
-#' data('results') |
|
7 |
+#' # Load the sample data from CoGAPS |
|
8 |
+#' data(SimpSim) |
|
8 | 9 |
#' # Run plotDiag |
9 |
-#' plotDiag(results) |
|
10 |
+#' plotDiag(SimpSim.result) |
|
10 | 11 |
#' @export |
11 | 12 |
plotDiag <-function(gapsRes) |
12 | 13 |
{ |
... | ... |
@@ -5,12 +5,13 @@ |
5 | 5 |
#' @param A the mean A matrix |
6 | 6 |
#' @param P the mean P matrix |
7 | 7 |
#' @param outputPDF optional root name for PDF output, if |
8 |
-#' not specified, output goes to screen |
|
8 |
+#' not specified, output goes to screen |
|
9 |
+#' @return plot |
|
9 | 10 |
#' @examples |
10 |
-#' # Load the outputs from gapsRun |
|
11 |
-#' data('results') |
|
12 |
-#' # Run plotGAPS with the correct arguments from 'results' |
|
13 |
-#' plotGAPS(results$Amean,results$Pmean) |
|
11 |
+#' # Load the sample data from CoGAPS |
|
12 |
+#' data(SimpSim) |
|
13 |
+#' # Run plotGAPS with arguments from CoGAPS results list |
|
14 |
+#' plotGAPS(SimpSim.result$Amean, SimpSim.result$Pmean) |
|
14 | 15 |
#' @export |
15 | 16 |
plotGAPS <- function(A, P, outputPDF="") |
16 | 17 |
{ |
... | ... |
@@ -3,16 +3,17 @@ |
3 | 3 |
#' @details plots the P matrix in a line plot with error bars |
4 | 4 |
#' @param Pmean matrix of mean values of P |
5 | 5 |
#' @param Psd matrix of standard deviation values of P |
6 |
+#' @return plot |
|
6 | 7 |
#' @examples |
7 |
-#' # Load the outputs from gapsRun |
|
8 |
-#' data('results') |
|
9 |
-#' # Run plotP with the correct arguments from 'results' |
|
10 |
-#' plotP(results$Pmean,results$Psd) |
|
8 |
+#' # Load the sample data from CoGAPS |
|
9 |
+#' data(SimpSim) |
|
10 |
+#' # Run plotP with arguments from CoGAPS results list |
|
11 |
+#' plotP(SimpSim.result$Pmean, SimpSim.result$Psd) |
|
11 | 12 |
#' @export |
12 | 13 |
plotP <- function(Pmean, Psd) |
13 | 14 |
{ |
14 |
- Nfactor=dim(Pmean)[1] |
|
15 |
- Nobs=dim(Pmean)[2] |
|
15 |
+ Nfactor <- nrow(Pmean) |
|
16 |
+ Nobs <- ncol(Pmean) |
|
16 | 17 |
RowP <- 1:Nobs |
17 | 18 |
colors <- rainbow(Nfactor) |
18 | 19 |
ylimits <- c(0,(max(Pmean + Psd)*1.05)) |
... | ... |
@@ -13,10 +13,8 @@ |
13 | 13 |
#' @return heatmap of the \code{data} values for the \code{patternMarkers} |
14 | 14 |
#' @seealso \code{\link{heatmap.2}} |
15 | 15 |
#' @examples |
16 |
-#' # Load the simulated data |
|
17 |
-#' data('SimpSim') |
|
18 |
-#' # Load the outputs from gapsRun |
|
19 |
-#' data('results') |
|
16 |
+#' # Load the sample data from CoGAPS |
|
17 |
+#' data(SimpSim) |
|
20 | 18 |
#' # Run patternMarkers and save the outputs |
21 | 19 |
#' PM <- patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
22 | 20 |
#' Pmatrix=results$Pmean,threshold="all",full=TRUE) |
... | ... |
@@ -1,6 +1,7 @@ |
1 |
-#'\code{plotSmoothPatterns} plots the output A and P matrices as a |
|
2 |
-#' heatmap and line plot respectively |
|
1 |
+#' Plot Smooth Patterns |
|
3 | 2 |
#' |
3 |
+#' @details plots the output A and P matrices as a heatmap and a |
|
4 |
+#' line plot respectively |
|
4 | 5 |
#' @param P the mean A matrix |
5 | 6 |
#' @param x optional variables |
6 | 7 |
#' @param breaks breaks in plots |
... | ... |
@@ -10,11 +11,12 @@ |
10 | 11 |
#' @param pointCol color of points |
11 | 12 |
#' @param lineCol color of line |
12 | 13 |
#' @param add logical specifying if bars should be added to an already existing |
13 |
-#' plot; defaults to `FALSE'. |
|
14 |
+#' plot; defaults to `FALSE'. |
|
14 | 15 |
#' @param ... arguments to be passed to/from other methods. For the default |
15 |
-#' method these can include further arguments (such as `axes', `asp' and |
|
16 |
-#' `main') and graphical parameters (see `par') which are passed to |
|
17 |
-#" `plot.window()', `title()' and `axis'. |
|
16 |
+#' method these can include further arguments (such as `axes', `asp' and |
|
17 |
+#' `main') and graphical parameters (see `par') which are passed to |
|
18 |
+#' `plot.window()', `title()' and `axis'. |
|
19 |
+#' @return plot |
|
18 | 20 |
#' @export |
19 | 21 |
plotSmoothPatterns <- function(P, x=NULL, breaks=NULL, breakStyle=TRUE, |
20 | 22 |
orderP=!all(is.null(x)), plotPTS=FALSE, pointCol='black', lineCol='grey', |
... | ... |
@@ -54,7 +56,7 @@ add=FALSE, ...) |
54 | 56 |
} |
55 | 57 |
else |
56 | 58 |
{ |
57 |
- stop('CoGAPS: plotSmoothPatterns: number of plot boundaries must match number of breaks in the plot') |
|
59 |
+ stop('number of plot boundaries must match number of breaks') |
|
58 | 60 |
} |
59 | 61 |
} |
60 | 62 |
} |
... | ... |
@@ -62,14 +64,15 @@ add=FALSE, ...) |
62 | 64 |
# check that dimensions agree |
63 | 65 |
if (ncol(P) != length(x)) |
64 | 66 |
{ |
65 |
- stop('CoGAPS: plotSmoothPatterns: length of x coordinates must match number of samples in the columns of the P matrix') |
|
67 |
+ stop('length of x coordinates must match number of samples') |
|
66 | 68 |
} |
67 | 69 |
|
68 |
- # If desired, reorder samples according to the group in which they obtain their maximum |
|
70 |
+ # reorder samples according to the group in which they obtain their maximum |
|
69 | 71 |
if (orderP) |
70 | 72 |
{ |
71 | 73 |
PMax <- apply(P,1,max) |
72 |
- xMax <- seq(from=ncol(P)+1,length.out=nrow(P))[order(PMax,decreasing=TRUE)] |
|
74 |
+ xMax <- seq(from=ncol(P)+1, length.out=nrow(P)) |
|
75 |
+ xMax <- xMax[order(PMax,decreasing=TRUE)] |
|
73 | 76 |
xTmp <- x |
74 | 77 |
PTmp <- P |
75 | 78 |
for (iP in order(PMax,decreasing=TRUE)) |
... | ... |
@@ -1,10 +1,10 @@ |
1 |
-#' postFixed4Parallel |
|
1 |
+#' Post Processing of Parallel Output |
|
2 | 2 |
#' |
3 | 3 |
#' @param AP.fixed output of parallel gapsMapRun calls with same FP |
4 |
-#' @param setPs data.frame with rows giving fixed patterns for P used as input for gapsMapRun |
|
5 |
-#' |
|
6 |
-#' @return list of two data.frames containing the A matrix estimates or their corresponding standard deviations |
|
7 |
-#' from output of parallel gapsMapRun |
|
4 |
+#' @param setPs data.frame with rows giving fixed patterns for P used as input |
|
5 |
+#' for gapsMapRun |
|
6 |
+#' @return list of two data.frames containing the A matrix estimates or their |
|
7 |
+#' corresponding standard deviations from output of parallel CoGAPS |
|
8 | 8 |
#' @export |
9 | 9 |
postFixed4Parallel <- function(AP.fixed=NA, setPs=NA) |
10 | 10 |
{ |
... | ... |
@@ -1,16 +1,13 @@ |
1 | 1 |
#' reOrderBySet |
2 | 2 |
#' |
3 |
-#' @description <restructures output of gapsRun into a list containing each sets solution for Amean, Pmean, and Asd> |
|
4 |
-#' @param AP output of gapsRun in parallel |
|
3 |
+#' @details restructures output of CoGAPS into a list containing each sets |
|
4 |
+#' solution for Amean, Pmean, and Asd |
|
5 |
+#' @param AP output of GWCoGAPS in parallel |
|
5 | 6 |
#' @param nFactor number of patterns |
6 | 7 |
#' @param nSets number of sets |
7 |
-#' |
|
8 |
-#' @return a list containing the \code{nSets} sets solution for Amean under "A", Pmean under "P", and Asd under "Asd" |
|
8 |
+#' @return a list containing the \code{nSets} sets solution for Amean under "A", |
|
9 |
+#' Pmean under "P", and Asd under "Asd" |
|
9 | 10 |
#' @export |
10 |
-#' |
|
11 |
-#' @examples \dontrun{ |
|
12 |
-#' reOrderBySet(AP,nFactor,nSets) |
|
13 |
-#' } |
|
14 | 11 |
reOrderBySet<-function(AP, nFactor, nSets) |
15 | 12 |
{ |
16 | 13 |
P<-do.call(rbind,lapply(AP, function(x) x$Pmean)) |
... | ... |
@@ -5,12 +5,12 @@ |
5 | 5 |
#' @param genes an index of the gene or genes of interest |
6 | 6 |
#' @return the D' estimate of a gene or set of genes |
7 | 7 |
#' @examples |
8 |
-#' # Load the simulated data |
|
9 |
-#' data('SimpSim') |
|
8 |
+#' # Load the sample data from CoGAPS |
|
9 |
+#' data(SimpSim) |
|
10 | 10 |
#' # Run reconstructGene |
11 |
-#' reconstructGene(A=SimpSim.A,P=SimpSim.P) |
|
11 |
+#' reconstructGene(SimpSim.result$Amean, SimpSim.result$Pmean) |
|
12 | 12 |
#' @export |
13 |
-reconstructGene<-function(A=NA, P=NA, genes=NA) |
|
13 |
+reconstructGene<-function(A, P, genes=NA) |
|
14 | 14 |
{ |
15 | 15 |
Dneu <- A %*% P |
16 | 16 |
if (!is.na(genes)) |
... | ... |
@@ -1,15 +1,15 @@ |
1 |
-#'\code{reorderByPatternMatch} plots the output A and P matrices as a |
|
2 |
-#' heatmap and line plot respectively |
|
1 |
+#' Reorder By Pattern Match |
|
3 | 2 |
#' |
4 |
-#'@param P matrix to be matched |
|
5 |
-#'@param matchTo matrix to match P to |
|
6 |
-#'@export |
|
3 |
+#' @param P matrix to be matched |
|
4 |
+#' @param matchTo matrix to match P to |
|
5 |
+#' @return matched patterns |
|
6 |
+#' @export |
|
7 | 7 |
reorderByPatternMatch <- function(P, matchTo) |
8 | 8 |
{ |
9 |
- # check that P and the matchTo matrix have the same dimensions for valid matching |
|
9 |
+ # check that P and the matchTo matrix have the same dimensions |
|
10 | 10 |
if (nrow(matchTo) != nrow(P) | ncol(matchTo) != ncol(P)) |
11 | 11 |
{ |
12 |
- stop('CoGAPS: reorderByPatternMatch: dimensions of P and matchTo must agree') |
|
12 |
+ stop('dimensions of P and matchTo must agree') |
|
13 | 13 |
} |
14 | 14 |
|
15 | 15 |
# ensuring that rownames match for simplicty of matching process |
... | ... |
@@ -5,13 +5,12 @@ |
5 | 5 |
#' @param PMean_Mat matrix of mean values for P from GAPS |
6 | 6 |
#' @param D original data matrix run through GAPS |
7 | 7 |
#' @param S original standard deviation matrix run through GAPS |
8 |
+#' @return creates a residual plot |
|
8 | 9 |
#' @examples |
9 |
-#' # Load the simulated data |
|
10 |
-#' data('SimpSim') |
|
11 |
-#' # Load the outputs from gapsRun |
|
12 |
-#' data('results') |
|
10 |
+#' # Load the sample data from CoGAPS |
|
11 |
+#' data(SimpSim) |
|
13 | 12 |
#' # Run residuals with the correct arguments |
14 |
-#' residuals(results$Amean,results$Pmean,SimpSim.D,SimpSim.S) |
|
13 |
+#' residuals(SimpSim.result$Amean, SimpSim.result$Pmean, SimpSim.D, SimpSim.S) |
|
15 | 14 |
#' @export |
16 | 15 |
residuals <- function(AMean_Mat, PMean_Mat, D, S) |
17 | 16 |
{ |
... | ... |
@@ -58,7 +58,11 @@ CoGAPS Matrix Factorization Algorithm |
58 | 58 |
} |
59 | 59 |
\details{ |
60 | 60 |
calls the C++ MCMC code and performs Bayesian |
61 |
- matrix factorization returning the two matrices that reconstruct |
|
62 |
- the data matrix |
|
61 |
+matrix factorization returning the two matrices that reconstruct |
|
62 |
+the data matrix |
|
63 |
+} |
|
64 |
+\examples{ |
|
65 |
+data(SimpSim) |
|
66 |
+result <- CoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nOutputs=250) |
|
63 | 67 |
} |
64 | 68 |
|
... | ... |
@@ -32,16 +32,22 @@ greater than or equal to the number of rows of FP} |
32 | 32 |
|
33 | 33 |
\item{...}{additional parameters to be fed into \code{gapsRun} and \code{gapsMapRun}} |
34 | 34 |
} |
35 |
+\value{ |
|
36 |
+list of A and P estimates |
|
37 |
+} |
|
35 | 38 |
\description{ |
36 |
-\code{GWCoGAPS} calls the C++ MCMC code and performs Bayesian |
|
39 |
+GWCoGAPS |
|
40 |
+} |
|
41 |
+\details{ |
|
42 |
+calls the C++ MCMC code and performs Bayesian |
|
37 | 43 |
matrix factorization returning the two matrices that reconstruct |
38 | 44 |
the data matrix for whole genome data; |
39 | 45 |
} |
40 | 46 |
\examples{ |
41 |
-# Load the simulated data |
|
42 |
-data('SimpSim') |
|
47 |
+# Load the sample data from CoGAPS |
|
48 |
+data(SimpSim) |
|
43 | 49 |
# Run GWCoGAPS |
44 |
-GWCoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nSets=2, numSnapshots = 5) |
|
50 |
+GWCoGAPS(SimpSim.D, SimpSim.S, nFactor=3, nSets=2) |
|
45 | 51 |
} |
46 | 52 |
\seealso{ |
47 | 53 |
\code{\link{gapsRun}}, \code{\link{patternMatch4Parallel}}, and \code{\link{gapsMapRun}} |
... | ... |
@@ -14,18 +14,21 @@ binaryA(Amean, Asd, threshold = 3) |
14 | 14 |
\item{threshold}{the number of standard deviations above zero |
15 | 15 |
that an element of Amean must be to get a value of 1} |
16 | 16 |
} |
17 |
+\value{ |
|
18 |
+plots a heatmap of the A Matrix |
|
19 |
+} |
|
17 | 20 |
\description{ |
18 | 21 |
Binary Heatmap for Standardized A Matrix |
19 | 22 |
} |
20 | 23 |
\details{ |
21 | 24 |
creates a binarized heatmap of the A matrix |
22 |
- in which the value is 1 if the value in Amean is greater than |
|
23 |
- threshold * Asd and 0 otherwise |
|
25 |
+in which the value is 1 if the value in Amean is greater than |
|
26 |
+threshold * Asd and 0 otherwise |
|
24 | 27 |
} |
25 | 28 |
\examples{ |
26 |
-# Load the outputs from gapsRun |
|
27 |
-data('results') |
|
29 |
+# Load the sample data from CoGAPS |
|
30 |
+data(SimpSim) |
|
28 | 31 |
# Run binaryA with the correct arguments from 'results' |
29 |
-binaryA(results$Amean,results$Asd,threshold=3) |
|
32 |
+binaryA(SimpSim.result$Amean, SimpSim.result$Asd, threshold=3) |
|
30 | 33 |
} |
31 | 34 |
|
... | ... |
@@ -15,20 +15,22 @@ calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm = 500) |
15 | 15 |
|
16 | 16 |
\item{numPerm}{number of permutations for null} |
17 | 17 |
} |
18 |
+\value{ |
|
19 |
+gene set statistics for each column of A |
|
20 |
+} |
|
18 | 21 |
\description{ |
19 | 22 |
Calculate Gene Set Statistics |
20 | 23 |
} |
21 | 24 |
\details{ |
22 | 25 |
calculates the gene set statistics for each |
23 |
- column of A using a Z-score from the elements of the A matrix, |
|
24 |
- the input gene set, and permutation tests |
|
26 |
+column of A using a Z-score from the elements of the A matrix, |
|
27 |
+the input gene set, and permutation tests |
|
25 | 28 |
} |
26 | 29 |
\examples{ |
27 |
-# Load the simulated data |
|
28 |
-data('SimpSim') |
|
29 |
-# Load the outputs from gapsRun |
|
30 |
-data('results') |
|
30 |
+# Load the sample data from CoGAPS |
|
31 |
+data(SimpSim) |
|
31 | 32 |
# Run calcCoGAPSStat with the correct arguments from 'results' |
32 |
-calcCoGAPSStat(results$Amean,results$Asd,GStoGenes=GSets,numPerm=500) |
|
33 |
+calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
34 |
+GStoGenes=GSets, numPerm=500) |
|
33 | 35 |
} |
34 | 36 |
|
... | ... |
@@ -18,22 +18,24 @@ calcGeneGSStat(Amean, Asd, GSGenes, numPerm, Pw = rep(1, ncol(Amean)), |
18 | 18 |
|
19 | 19 |
\item{Pw}{weight on genes} |
20 | 20 |
|
21 |
-\item{nullGenes}{- logical indicating gene adjustment} |
|
21 |
+\item{nullGenes}{logical indicating gene adjustment} |
|
22 |
+} |
|
23 |
+\value{ |
|
24 |
+gene similiarity statistic |
|
22 | 25 |
} |
23 | 26 |
\description{ |
24 | 27 |
Probability Gene Belongs in Gene Set |
25 | 28 |
} |
26 | 29 |
\details{ |
27 | 30 |
calculates the probability that a gene |
28 |
- listed in a gene set behaves like other genes in the set within |
|
29 |
- the given data set |
|
31 |
+listed in a gene set behaves like other genes in the set within |
|
32 |
+the given data set |
|
30 | 33 |
} |
31 | 34 |
\examples{ |
32 |
-# Load the simulated data |
|
35 |
+# Load the sample data from CoGAPS |
|
33 | 36 |
data('SimpSim') |
34 |
-# Load the outputs from gapsRun |
|
35 |
-data('results') |
|
36 | 37 |
# Run calcGeneGSStat with the correct arguments from 'results' |
37 |
-calcGeneGSStat(results$Amean,results$Asd,GSGenes=GSets[[1]],numPerm=500) |
|
38 |
+calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
39 |
+GSGenes=GSets[[1]], numPerm=500) |
|
38 | 40 |
} |
39 | 41 |
|
... | ... |
@@ -11,17 +11,20 @@ calcZ(meanMat, sdMat) |
11 | 11 |
|
12 | 12 |
\item{sdMat}{matrix of standard deviation values} |
13 | 13 |
} |
14 |
+\value{ |
|
15 |
+matrix of z-scores |
|
16 |
+} |
|
14 | 17 |
\description{ |
15 | 18 |
Compute Z-Score Matrix |
16 | 19 |
} |
17 | 20 |
\details{ |
18 | 21 |
calculates the Z-score for each element based on input mean |
19 |
- and standard deviation matrices |
|
22 |
+and standard deviation matrices |
|
20 | 23 |
} |
21 | 24 |
\examples{ |
22 |
-# Load the simulated data |
|
23 |
-data('SimpSim') |
|
25 |
+# Load the sample data from CoGAPS |
|
26 |
+data(SimpSim) |
|
24 | 27 |
# Run calcZ |
25 |
-calcZ(SimpSim.D,SimpSim.S) |
|
28 |
+calcZ(SimpSim.result$Amean, SimpSim.result$Asd) |
|
26 | 29 |
} |
27 | 30 |
|
... | ... |
@@ -22,16 +22,23 @@ computeGeneGSProb(Amean, Asd, GSGenes, Pw = rep(1, ncol(Amean)), |
22 | 22 |
} |
23 | 23 |
\value{ |
24 | 24 |
A vector of length GSGenes containing the p-values of set membership |
25 |
- for each gene containined in the set specified in GSGenes. |
|
25 |
+for each gene containined in the set specified in GSGenes. |
|
26 | 26 |
} |
27 | 27 |
\description{ |
28 | 28 |
Compute Gene Probability |
29 | 29 |
} |
30 | 30 |
\details{ |
31 | 31 |
Computes the p-value for gene set membership using the CoGAPS-based |
32 |
- statistics developed in Fertig et al. (2012). This statistic refines set |
|
33 |
- membership for each candidate gene in a set specified in \code{GSGenes} by |
|
34 |
- comparing the inferred activity of that gene to the average activity of the |
|
35 |
- set. |
|
32 |
+statistics developed in Fertig et al. (2012). This statistic refines set |
|
33 |
+membership for each candidate gene in a set specified in \code{GSGenes} by |
|
34 |
+comparing the inferred activity of that gene to the average activity of the |
|
35 |
+set. |
|
36 |
+} |
|
37 |
+\examples{ |
|
38 |
+# Load the sample data from CoGAPS |
|
39 |
+data('SimpSim') |
|
40 |
+# Run calcGeneGSStat with the correct arguments from 'results' |
|
41 |
+calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
42 |
+GSGenes=GSets[[1]], numPerm=500) |
|
36 | 43 |
} |
37 | 44 |
|
... | ... |
@@ -26,9 +26,9 @@ Create Gene Sets for GWCoGAPS |
26 | 26 |
factors whole genome data into randomly generated sets for indexing |
27 | 27 |
} |
28 | 28 |
\examples{ |
29 |
-# Load the simulated data |
|
30 |
-data('SimpSim') |
|
29 |
+# Load the sample data from CoGAPS |
|
30 |
+data(SimpSim) |
|
31 | 31 |
# Run createGWCoGAPSSets |
32 |
-createGWCoGAPSSets(SimpSim.D,nSets=2) |
|
32 |
+createGWCoGAPSSets(SimpSim.D, nSets=2) |
|
33 | 33 |
} |
34 | 34 |
|
... | ... |
@@ -6,6 +6,9 @@ |
6 | 6 |
\usage{ |
7 | 7 |
displayBuildReport() |
8 | 8 |
} |
9 |
+\value{ |
|
10 |
+display builds information |
|
11 |
+} |
|
9 | 12 |
\description{ |
10 | 13 |
Display Information About Package Compilation |
11 | 14 |
} |
... | ... |
@@ -13,4 +16,7 @@ Display Information About Package Compilation |
13 | 16 |
displays information about how the package was compiled, i.e. which |
14 | 17 |
compiler/version was used, which compile time options were enabled, etc... |
15 | 18 |
} |
19 |
+\examples{ |
|
20 |
+ CoGAPS::displayBuildReport() |
|
21 |
+} |
|
16 | 22 |
|
... | ... |
@@ -28,8 +28,8 @@ genes rankings with a column for each \code{lp} will also be returned. |
28 | 28 |
patternMarkers |
29 | 29 |
} |
30 | 30 |
\examples{ |
31 |
-# Load the outputs from gapsRun |
|
32 |
-data('results') |
|
31 |
+# Load the sample data from CoGAPS |
|
32 |
+data(SimpSim) |
|
33 | 33 |
# Run patternMarkers with the correct arguments from 'results' |
34 | 34 |
patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
35 | 35 |
Pmatrix=results$Pmean,threshold="all",full=TRUE) |
... | ... |
@@ -13,16 +13,19 @@ plotAtoms(gapsRes, type = "sampA") |
13 | 13 |
"equilA", or "equilP" to plot sampling or equilibration teop |
14 | 14 |
atom numbers} |
15 | 15 |
} |
16 |
+\value{ |
|
17 |
+plot |
|
18 |
+} |
|
16 | 19 |
\description{ |
17 | 20 |
Plot Number of Atoms |
18 | 21 |
} |
19 | 22 |
\details{ |
20 | 23 |
a simple plot of the number of atoms |
21 |
- from one of the vectors returned with atom numbers |
|
24 |
+from one of the vectors returned with atom numbers |
|
22 | 25 |
} |
23 | 26 |
\examples{ |
24 |
-# Load the outputs from gapsRun |
|
25 |
-data('results') |
|
27 |
+# Load the sample data from CoGAPS |
|
28 |
+data(SimpSim) |
|
26 | 29 |
# Run plotAtoms |
27 | 30 |
plotAtoms(results,type="sampA") |
28 | 31 |
} |
... | ... |
@@ -9,6 +9,9 @@ plotDiag(gapsRes) |
9 | 9 |
\arguments{ |
10 | 10 |
\item{gapsRes}{list returned by CoGAPS} |
11 | 11 |
} |
12 |
+\value{ |
|
13 |
+plot |
|
14 |
+} |
|
12 | 15 |
\description{ |
13 | 16 |
Diagnostic Plots |
14 | 17 |
} |
... | ... |
@@ -16,9 +19,9 @@ Diagnostic Plots |
16 | 19 |
plots a series of diagnostic plots |
17 | 20 |
} |
18 | 21 |
\examples{ |
19 |
-# Load the outputs from gapsRun |
|
20 |
-data('results') |
|
22 |
+# Load the sample data from CoGAPS |
|
23 |
+data(SimpSim) |
|
21 | 24 |
# Run plotDiag |
22 |
-plotDiag(results) |
|
25 |
+plotDiag(SimpSim.result) |
|
23 | 26 |
} |
24 | 27 |
|
... | ... |
@@ -14,6 +14,9 @@ plotGAPS(A, P, outputPDF = "") |
14 | 14 |
\item{outputPDF}{optional root name for PDF output, if |
15 | 15 |
not specified, output goes to screen} |
16 | 16 |
} |
17 |
+\value{ |
|
18 |
+plot |
|
19 |
+} |
|
17 | 20 |
\description{ |
18 | 21 |
Plot Decomposed A and P Matrices |
19 | 22 |
} |
... | ... |
@@ -22,9 +25,9 @@ plots the output A and P matrices as a |
22 | 25 |
heatmap and line plot respectively |
23 | 26 |
} |
24 | 27 |
\examples{ |
25 |
-# Load the outputs from gapsRun |
|
26 |
-data('results') |
|
27 |
-# Run plotGAPS with the correct arguments from 'results' |
|
28 |
-plotGAPS(results$Amean,results$Pmean) |
|
28 |
+# Load the sample data from CoGAPS |
|
29 |
+data(SimpSim) |
|
30 |
+# Run plotGAPS with arguments from CoGAPS results list |
|
31 |
+plotGAPS(SimpSim.result$Amean, SimpSim.result$Pmean) |
|
29 | 32 |
} |
30 | 33 |
|
... | ... |
@@ -11,6 +11,9 @@ plotP(Pmean, Psd) |
11 | 11 |
|
12 | 12 |
\item{Psd}{matrix of standard deviation values of P} |
13 | 13 |
} |
14 |
+\value{ |
|
15 |
+plot |
|
16 |
+} |
|
14 | 17 |
\description{ |
15 | 18 |
Plot the P Matrix |
16 | 19 |
} |
... | ... |
@@ -18,9 +21,9 @@ Plot the P Matrix |
18 | 21 |
plots the P matrix in a line plot with error bars |
19 | 22 |
} |
20 | 23 |
\examples{ |
21 |
-# Load the outputs from gapsRun |
|
22 |
-data('results') |
|
23 |
-# Run plotP with the correct arguments from 'results' |
|
24 |
-plotP(results$Pmean,results$Psd) |
|
24 |
+# Load the sample data from CoGAPS |
|
25 |
+data(SimpSim) |
|
26 |
+# Run plotP with arguments from CoGAPS results list |
|
27 |
+plotP(SimpSim.result$Pmean, SimpSim.result$Psd) |
|
25 | 28 |
} |
26 | 29 |
|
... | ... |
@@ -35,10 +35,8 @@ heatmap of the \code{data} values for the \code{patternMarkers} |
35 | 35 |
plotPatternMarkers |
36 | 36 |
} |
37 | 37 |
\examples{ |
38 |
-# Load the simulated data |
|
39 |
-data('SimpSim') |
|
40 |
-# Load the outputs from gapsRun |
|
41 |
-data('results') |
|
38 |
+# Load the sample data from CoGAPS |
|
39 |
+data(SimpSim) |
|
42 | 40 |
# Run patternMarkers and save the outputs |
43 | 41 |
PM <- patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
44 | 42 |
Pmatrix=results$Pmean,threshold="all",full=TRUE) |
... | ... |
@@ -2,8 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/plotSmoothPatterns.R |
3 | 3 |
\name{plotSmoothPatterns} |
4 | 4 |
\alias{plotSmoothPatterns} |
5 |
-\title{\code{plotSmoothPatterns} plots the output A and P matrices as a |
|
6 |
-heatmap and line plot respectively} |
|
5 |
+\title{Plot Smooth Patterns} |
|
7 | 6 |
\usage{ |
8 | 7 |
plotSmoothPatterns(P, x = NULL, breaks = NULL, breakStyle = TRUE, |
9 | 8 |
orderP = !all(is.null(x)), plotPTS = FALSE, pointCol = "black", |
... | ... |
@@ -31,10 +30,17 @@ plot; defaults to `FALSE'.} |
31 | 30 |
|
32 | 31 |
\item{...}{arguments to be passed to/from other methods. For the default |
33 | 32 |
method these can include further arguments (such as `axes', `asp' and |
34 |
-`main') and graphical parameters (see `par') which are passed to} |
|
33 |
+`main') and graphical parameters (see `par') which are passed to |
|
34 |
+`plot.window()', `title()' and `axis'.} |
|
35 |
+} |
|
36 |
+\value{ |
|
37 |
+plot |
|
35 | 38 |
} |
36 | 39 |
\description{ |
37 |
-\code{plotSmoothPatterns} plots the output A and P matrices as a |
|
38 |
-heatmap and line plot respectively |
|
40 |
+Plot Smooth Patterns |
|
41 |
+} |
|
42 |
+\details{ |
|
43 |
+plots the output A and P matrices as a heatmap and a |
|
44 |
+line plot respectively |
|
39 | 45 |
} |
40 | 46 |
|
... | ... |
@@ -2,20 +2,21 @@ |
2 | 2 |
% Please edit documentation in R/postFixed4Parallel.R |
3 | 3 |
\name{postFixed4Parallel} |
4 | 4 |
\alias{postFixed4Parallel} |
5 |
-\title{postFixed4Parallel} |
|
5 |
+\title{Post Processing of Parallel Output} |
|
6 | 6 |
\usage{ |
7 | 7 |
postFixed4Parallel(AP.fixed = NA, setPs = NA) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{AP.fixed}{output of parallel gapsMapRun calls with same FP} |
11 | 11 |
|
12 |
-\item{setPs}{data.frame with rows giving fixed patterns for P used as input for gapsMapRun} |
|
12 |
+\item{setPs}{data.frame with rows giving fixed patterns for P used as input |
|
13 |
+for gapsMapRun} |
|
13 | 14 |
} |
14 | 15 |
\value{ |
15 |
-list of two data.frames containing the A matrix estimates or their corresponding standard deviations |
|
16 |
-from output of parallel gapsMapRun |
|
16 |
+list of two data.frames containing the A matrix estimates or their |
|
17 |
+corresponding standard deviations from output of parallel CoGAPS |
|
17 | 18 |
} |
18 | 19 |
\description{ |
19 |
-postFixed4Parallel |
|
20 |
+Post Processing of Parallel Output |
|
20 | 21 |
} |
21 | 22 |
|
... | ... |
@@ -7,21 +7,21 @@ |
7 | 7 |
reOrderBySet(AP, nFactor, nSets) |
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{AP}{output of gapsRun in parallel} |
|
10 |
+\item{AP}{output of GWCoGAPS in parallel} |
|
11 | 11 |
|
12 | 12 |
\item{nFactor}{number of patterns} |
13 | 13 |
|
14 | 14 |
\item{nSets}{number of sets} |
15 | 15 |
} |
16 | 16 |
\value{ |
17 |
-a list containing the \code{nSets} sets solution for Amean under "A", Pmean under "P", and Asd under "Asd" |
|
17 |
+a list containing the \code{nSets} sets solution for Amean under "A", |
|
18 |
+Pmean under "P", and Asd under "Asd" |
|
18 | 19 |
} |
19 | 20 |
\description{ |
20 |
-<restructures output of gapsRun into a list containing each sets solution for Amean, Pmean, and Asd> |
|
21 |
-} |
|
22 |
-\examples{ |
|
23 |
-\dontrun{ |
|
24 |
-reOrderBySet(AP,nFactor,nSets) |
|
21 |
+reOrderBySet |
|
25 | 22 |
} |
23 |
+\details{ |
|