... | ... |
@@ -27,7 +27,6 @@ cellMatchR <- function(Atot,nSets, cnt, minNS=NULL, maxNS=NULL, ignore.NA=FALSE, |
27 | 27 |
}} |
28 | 28 |
if(ignore.NA==TRUE){Atot<-Atot[complete.cases(Atot),]} |
29 | 29 |
|
30 |
- |
|
31 | 30 |
corcut<-function(Atot,minNS,cnt,cluster.method){ |
32 | 31 |
corr.dist=cor(Atot) |
33 | 32 |
corr.dist=1-corr.dist |
... | ... |
@@ -55,30 +54,35 @@ corcut<-function(Atot,minNS,cnt,cluster.method){ |
55 | 54 |
RtoMeanPattern[[i]] <- sapply(1:nIN,function(j) {round(cor(x=Atot[,cut==i][,j],y=cMNs[,i]),3)}) |
56 | 55 |
} |
57 | 56 |
} |
58 |
- PByClust[sapply(PByClust,is.null)]<-NULL |
|
57 |
+ AByClust[sapply(AByClust,is.null)]<-NULL |
|
59 | 58 |
RtoMeanPattern[sapply(RtoMeanPattern,is.null)]<-NULL |
60 | 59 |
return(list("RtoMeanPattern"=RtoMeanPattern,"AByClust"=AByClust)) |
61 | 60 |
} |
62 |
- |
|
63 | 61 |
cc<-corcut(Atot,minNS,cnt,cluster.method) |
64 | 62 |
|
65 | 63 |
### split by maxNS |
66 |
- indx<-which(unlist(lapply(cc$PByClust,function(x) dim(x)[1]>maxNS))) |
|
67 |
- while(length(indx)>0){ |
|
68 |
- icc<-corcut(cc$AByClust[[indx[1]]],minNS,2,cluster.method) |
|
69 |
- cc$AByClust[[indx[1]]]<-icc[[2]][[2]] |
|
70 |
- cc$RtoMeanPattern[[indx[1]]]<-icc[[1]][[2]] |
|
71 |
- if(length(icc[[2]])>1){ |
|
72 |
- cc$AByClust<-append(cc$AByClust,icc[[2]][1]) |
|
73 |
- cc$RtoMeanPattern<-append(cc$RtoMeanPattern,icc[[1]][1]) |
|
74 |
- } |
|
75 |
- indx<-which(unlist(lapply(cc$PByClust,function(x) dim(x)[1]>maxNS))) |
|
64 |
+ indx<-which(unlist(lapply(cc$AByClust,function(x) dim(x)[1]>maxNS))) |
|
65 |
+ i<-1 |
|
66 |
+ while(length(indx)>0){ |
|
67 |
+ icc<-corcut(cc$AByClust[[indx[1]]],minNS,2,cluster.method) |
|
68 |
+ if(length(icc[[2]])==0){ |
|
69 |
+ indx<-indx[-1] |
|
70 |
+ next |
|
71 |
+ } else{ |
|
72 |
+ cc$AByClust[[indx[1]]]<-icc[[2]][[1]] |
|
73 |
+ cc$RtoMeanPattern[[indx[1]]]<-icc[[1]][[1]] |
|
74 |
+ if(length(icc[[2]])>1){ |
|
75 |
+ cc$AByClust<-append(cc$AByClust,icc[[2]][2]) |
|
76 |
+ cc$RtoMeanPattern<-append(cc$RtoMeanPattern,icc[[1]][2]) |
|
77 |
+ } |
|
78 |
+ indx<-which(unlist(lapply(cc$AByClust,function(x) dim(x)[1]>maxNS))) |
|
79 |
+ } |
|
76 | 80 |
} |
77 | 81 |
|
82 |
+ |
|
78 | 83 |
#weighted.mean(AByClustDrop[[1]],RtoMPDrop[[1]]) |
79 | 84 |
AByCDSWavg<- t(sapply(1:length(cc$AByClust),function(z) apply(cc$AByClust[[z]],1,function(x) weighted.mean(x,(cc$RtoMeanPattern[[z]])^3)))) |
80 | 85 |
rownames(AByCDSWavg) <- lapply(1:length(cc$AByClust),function(x) paste("Pattern",x)) |
81 |
- |
|
82 | 86 |
#scale As |
83 | 87 |
Amax <- apply(AByCDSWavg,1,max) |
84 | 88 |
AByCDSWavgScaled <- t(sapply(1:dim(AByCDSWavg)[1],function(x) AByCDSWavg[x,]/Amax[x])) |
... | ... |
@@ -7,14 +7,14 @@ |
7 | 7 |
#' @param nSets number of sets to partition the data into |
8 | 8 |
#' @param simulationName name used to identify files created by this simulation |
9 | 9 |
#' @param samplingRatio vector of relative quantities to use for sampling celltypes |
10 |
-#' @param annotionObj vector of same length as number of columns of D |
|
10 |
+#' @param anotionObj vector of same length as number of columns of D |
|
11 | 11 |
#' @param path character string indicating were to save resulting data objects. default is current working dir |
12 | 12 |
#' @return simulationName used to identify saved files |
13 | 13 |
#' @examples |
14 | 14 |
#' data(SimpSim) |
15 | 15 |
#' createscCoGAPSSets(SimpSim.D, SimpSim.S, nSets=2, "example") |
16 | 16 |
#' @export |
17 |
-createscCoGAPSSets <- function(D, nSets, simulationName,samplingRatio=NULL,path="",annotionObj=NULL) |
|
17 |
+createscCoGAPSSets <- function(D, nSets, simulationName,samplingRatio=NULL,path="",anotionObj=NULL) |
|
18 | 18 |
{ |
19 | 19 |
# check gene names |
20 | 20 |
if (length(unique(colnames(D))) != length(colnames(D))) |
... | ... |
@@ -34,8 +34,8 @@ createscCoGAPSSets <- function(D, nSets, simulationName,samplingRatio=NULL,path= |
34 | 34 |
cellset <- sample(cells, sampleSize, replace=FALSE) |
35 | 35 |
cells <- cells[!(cells %in% cellset)] |
36 | 36 |
} else { |
37 |
- if(length(unique(annotionObj))!=length(samplingRatio)){warning("Not all celltypes will be sampled from.")} |
|
38 |
- ct.indx<-lapply(unique(annotionObj),function(x) which(annotionObj == x)) |
|
37 |
+ if(length(unique(anotionObj))!=length(samplingRatio)){warning("Not all celltypes will be sampled from.")} |
|
38 |
+ ct.indx<-lapply(unique(anotionObj),function(x) which(anotionObj == x)) |
|
39 | 39 |
cellset<-sample(colnames(D)[ct.indx[[x]]], samplingRatio[x],replace=TRUE) |
40 | 40 |
} |
41 | 41 |
|
... | ... |
@@ -8,17 +8,15 @@ |
8 | 8 |
postFixed4SC <- function(AP.fixed, setAs) |
9 | 9 |
{ |
10 | 10 |
ASummary <- AP.fixed[[1]]$Amean |
11 |
- |
|
12 |
- |
|
13 | 11 |
PSummary <- do.call(cbind,lapply(AP.fixed, function(x) x$Pmean)) |
14 | 12 |
Psd <- do.call(cbind,lapply(AP.fixed, function(x) x$Psd)) |
15 | 13 |
|
16 |
- Pmax <- apply(PSummary,2,max) |
|
17 |
- Pneu <- sweep(PSummary,2,Pmax,FUN="/") |
|
18 |
- Aneu <- sweep(ASummary,1,Pmax,FUN="*") |
|
14 |
+ Amax <- apply(ASummary,2,max) |
|
15 |
+ Aneu <- sweep(ASummary,2,Amax,FUN="/") |
|
16 |
+ Pneu <- sweep(PSummary,1,Amax,FUN="*") |
|
19 | 17 |
|
20 |
- X <- apply(Pneu,2,range) |
|
21 |
- Y <- apply(setPs,2,range) |
|
18 |
+ X <- apply(Aneu,2,range) |
|
19 |
+ Y <- apply(setAs,2,range) |
|
22 | 20 |
colnames(X) <- colnames(Y) |
23 | 21 |
if (all.equal(X,Y,tolerance=0.01) != TRUE) |
24 | 22 |
warning("Patterns do not match fixed values.") |