... | ... |
@@ -4,28 +4,16 @@ export(CoGAPS) |
4 | 4 |
export(CoGapsFromCheckpoint) |
5 | 5 |
export(GWCoGAPS) |
6 | 6 |
export(binaryA) |
7 |
-export(calcCoGAPSStat) |
|
8 |
-export(calcGeneGSStat) |
|
9 | 7 |
export(calcZ) |
10 |
-export(computeGeneGSProb) |
|
11 | 8 |
export(createGWCoGAPSSets) |
12 | 9 |
export(displayBuildReport) |
13 | 10 |
export(gapsMapRun) |
14 | 11 |
export(gapsRun) |
15 |
-export(generateSeeds) |
|
16 |
-export(patternMarkers) |
|
17 |
-export(patternMatch4Parallel) |
|
18 |
-export(patternMatcher) |
|
19 | 12 |
export(plotAtoms) |
20 | 13 |
export(plotDiag) |
21 | 14 |
export(plotGAPS) |
22 | 15 |
export(plotP) |
23 |
-export(plotPatternMarkers) |
|
24 |
-export(plotSmoothPatterns) |
|
25 |
-export(postFixed4Parallel) |
|
26 |
-export(reOrderBySet) |
|
27 | 16 |
export(reconstructGene) |
28 |
-export(reorderByPatternMatch) |
|
29 | 17 |
export(residuals) |
30 | 18 |
import(doParallel) |
31 | 19 |
import(foreach) |
... | ... |
@@ -118,6 +118,9 @@ displayBuildReport <- function() |
118 | 118 |
#' @return list with A and P matrix estimates |
119 | 119 |
#' @importFrom methods new |
120 | 120 |
#' @inheritParams CoGAPS |
121 |
+#' @examples |
|
122 |
+#' data(SimpSim) |
|
123 |
+#' result <- gapsRun(SimpSim.D, SimpSim.S, nFactor=3) |
|
121 | 124 |
#' @export |
122 | 125 |
gapsRun <- function(D, S, ABins=data.frame(), PBins=data.frame(), nFactor=7, |
123 | 126 |
simulation_id="simulation", nEquil=1000, nSample=1000, nOutR=1000, |
... | ... |
@@ -142,6 +145,11 @@ alphaP=0.01, nMaxP=100000, max_gibbmass_paraP=100.0, seed=-1, messages=TRUE) |
142 | 145 |
#' @return list with A and P matrix estimates |
143 | 146 |
#' @importFrom methods new |
144 | 147 |
#' @inheritParams gapsRun |
148 |
+#' @examples |
|
149 |
+#' data(SimpSim) |
|
150 |
+#' nC <- ncol(SimpSim.D) |
|
151 |
+#' patterns <- matrix(runif(nC, 0, 1), nrow=1, ncol=nC) |
|
152 |
+#' result <- gapsMapRun(SimpSim.D, SimpSim.S, FP=patterns, nFactor=3) |
|
145 | 153 |
#' @export |
146 | 154 |
gapsMapRun <- function(D, S, FP, ABins=data.frame(), PBins=data.frame(), |
147 | 155 |
nFactor=5, simulation_id="simulation", nEquil=1000, nSample=1000, nOutR=1000, |
... | ... |
@@ -163,6 +171,7 @@ v2CoGAPS <- function(result, ...) |
163 | 171 |
{ |
164 | 172 |
if (!is.null(list(...)$GStoGenes)) |
165 | 173 |
{ |
174 |
+ #warning('GStoGenes is deprecated with v3.0, see CoGAPS documentation') |
|
166 | 175 |
if (is.null(list(...)$plot) | list(...)$plot) |
167 | 176 |
{ |
168 | 177 |
plotGAPS(result$Amean, result$Pmean) |
... | ... |
@@ -8,13 +8,6 @@ |
8 | 8 |
#' @param GStoGenes data.frame or list with gene sets |
9 | 9 |
#' @param numPerm number of permutations for null |
10 | 10 |
#' @return gene set statistics for each column of A |
11 |
-#' @examples |
|
12 |
-#' # Load the sample data from CoGAPS |
|
13 |
-#' data(SimpSim) |
|
14 |
-#' # Run calcCoGAPSStat with the correct arguments from 'results' |
|
15 |
-#' calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
16 |
-#' GStoGenes=GSets, numPerm=500) |
|
17 |
-#' @export |
|
18 | 11 |
calcCoGAPSStat <- function (Amean, Asd, GStoGenes, numPerm=500) |
19 | 12 |
{ |
20 | 13 |
# test for std dev of zero, possible mostly in simple simulations |
... | ... |
@@ -24,29 +17,30 @@ calcCoGAPSStat <- function (Amean, Asd, GStoGenes, numPerm=500) |
24 | 17 |
# calculate Z scores |
25 | 18 |
zMatrix <- calcZ(Amean,Asd) |
26 | 19 |
|
20 |
+ # check input arguments |
|
21 |
+ if (!is(GStoGenes, "data.frame") && !is(GStoGenes, "list") && !is(GStoGenes,"GSA.genesets")) |
|
22 |
+ { |
|
23 |
+ stop("GStoGenes must be a data.frame,GSA.genesets, or list with format specified in the users manual.") |
|
24 |
+ } |
|
25 |
+ |
|
27 | 26 |
if (is(GStoGenes, "GSA.genesets")) |
28 | 27 |
{ |
29 | 28 |
names(GStoGenes$genesets) <- GStoGenes$geneset.names |
30 | 29 |
GStoGenes <- GStoGenes$genesets |
31 | 30 |
} |
32 |
- else if (is(GStoGenes, "list")) |
|
31 |
+ |
|
32 |
+ if (is(GStoGenes, "list")) |
|
33 | 33 |
{ |
34 | 34 |
GStoGenesList <- GStoGenes |
35 | 35 |
} |
36 |
- else if (is(GStoGenes, "data.frame")) |
|
36 |
+ else |
|
37 | 37 |
{ |
38 | 38 |
GStoGenesList <- list() |
39 | 39 |
for (i in 1:dim(GStoGenes)[2]) |
40 | 40 |
{ |
41 |
- GStoGenesList[[as.character(colnames(GStoGenes)[i])]] <- |
|
42 |
- as.character(unique(GStoGenes[,i])) |
|
41 |
+ GStoGenesList[[as.character(colnames(GStoGenes)[i])]] <- as.character(unique(GStoGenes[,i])) |
|
43 | 42 |
} |
44 | 43 |
} |
45 |
- else |
|
46 |
- { |
|
47 |
- stop(paste("GStoGenes must be a data.frame, GSA.genesets, or list with", |
|
48 |
- "format specified in the users manual.")) |
|
49 |
- } |
|
50 | 44 |
|
51 | 45 |
# get dimensions |
52 | 46 |
numGS <- length(names(GStoGenesList)) |
... | ... |
@@ -10,13 +10,6 @@ |
10 | 10 |
#' @param Pw weight on genes |
11 | 11 |
#' @param nullGenes logical indicating gene adjustment |
12 | 12 |
#' @return gene similiarity statistic |
13 |
-#' @examples |
|
14 |
-#' # Load the sample data from CoGAPS |
|
15 |
-#' data('SimpSim') |
|
16 |
-#' # Run calcGeneGSStat |
|
17 |
-#' calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
18 |
-#' GSGenes=GSets[[1]], numPerm=500, nullGenes=TRUE) |
|
19 |
-#' @export |
|
20 | 13 |
calcGeneGSStat <- function(Amean, Asd, GSGenes, numPerm, Pw=rep(1,ncol(Amean)), |
21 | 14 |
nullGenes=FALSE) |
22 | 15 |
{ |
... | ... |
@@ -46,10 +39,10 @@ nullGenes=FALSE) |
46 | 39 |
outStats <- outStats / apply(ZD,1,sum) |
47 | 40 |
outStats[which(apply(ZD,1,sum) < 1e-6)] <- 0 |
48 | 41 |
|
49 |
- #if (sum(gsStat) < 1e-6) |
|
50 |
- #{ |
|
51 |
- # return(0) |
|
52 |
- #} |
|
42 |
+ if (sum(gsStat) < 1e-6) |
|
43 |
+ { |
|
44 |
+ return(0) |
|
45 |
+ } |
|
53 | 46 |
return(outStats) |
54 | 47 |
} |
55 | 48 |
|
... | ... |
@@ -69,12 +62,6 @@ nullGenes=FALSE) |
69 | 62 |
#' @return A vector of length GSGenes containing the p-values of set membership |
70 | 63 |
#' for each gene containined in the set specified in GSGenes. |
71 | 64 |
#' @examples |
72 |
-#' # Load the sample data from CoGAPS |
|
73 |
-#' data('SimpSim') |
|
74 |
-#' # Run calcGeneGSStat with the correct arguments from 'results' |
|
75 |
-#' calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
76 |
-#' GSGenes=GSets[[1]], numPerm=500) |
|
77 |
-#' @export |
|
78 | 65 |
computeGeneGSProb <- function(Amean, Asd, GSGenes, Pw=rep(1,ncol(Amean)), |
79 | 66 |
numPerm=500, PwNull=FALSE) |
80 | 67 |
{ |
... | ... |
@@ -4,9 +4,6 @@ |
4 | 4 |
#' @param seed positive values are kept, negative values will be overwritten |
5 | 5 |
#' by a seed generated from the current time |
6 | 6 |
#' @return vector of randomly generated seeds |
7 |
-#' @examples |
|
8 |
-#' seeds <- generateSeeds(chains=2, seed=-1) |
|
9 |
-#' @export |
|
10 | 7 |
generateSeeds <- function(chains=2, seed=-1) |
11 | 8 |
{ |
12 | 9 |
if (chains < 2 || (as.integer(chains) != chains)) |
... | ... |
@@ -8,13 +8,6 @@ |
8 | 8 |
#' @param full logical indicating whether to return the ranks of each gene for each pattern |
9 | 9 |
#' @return By default a non-overlapping list of genes associated with each \code{lp}. If \code{full=TRUE} a data.frame of |
10 | 10 |
#' genes rankings with a column for each \code{lp} will also be returned. |
11 |
-#' @examples |
|
12 |
-#' # Load the sample data from CoGAPS |
|
13 |
-#' data(SimpSim) |
|
14 |
-#' # Run patternMarkers with the correct arguments from 'results' |
|
15 |
-#' patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
|
16 |
-#' Pmatrix=results$Pmean,threshold="all",full=TRUE) |
|
17 |
-#' @export |
|
18 | 11 |
patternMarkers <- function(Amatrix=NA, scaledPmatrix=FALSE, Pmatrix=NA, |
19 | 12 |
threshold="all", lp=NA, full=FALSE) |
20 | 13 |
{ |
... | ... |
@@ -10,7 +10,6 @@ |
10 | 10 |
#' @param ... additional parameters for \code{agnes} |
11 | 11 |
#' @return a matrix of concensus patterns by samples. If \code{bySet=TRUE} then a list of the set contributions to each |
12 | 12 |
#' concensus pattern is also returned. |
13 |
-#' @export |
|
14 | 13 |
#' @seealso \code{\link{agnes}} |
15 | 14 |
patternMatch4Parallel <- function(Ptot, nSets, cnt, minNS, |
16 | 15 |
cluster.method="complete", ignore.NA=FALSE, bySet=FALSE, ...) |
... | ... |
@@ -5,7 +5,6 @@ |
5 | 5 |
#' @param order optional vector indicating order of samples for plotting. Default is NULL. |
6 | 6 |
#' @param sample.color optional vector of colors of same length as colnames. Default is NULL. |
7 | 7 |
#' @return either an index of selected sets' contributions or the editted \code{PBySet} object |
8 |
-#' @export |
|
9 | 8 |
patternMatcher<-function(PBySet=NULL,out=NULL,order=NULL, sample.color=NULL) |
10 | 9 |
{ |
11 | 10 |
runApp(list( |
... | ... |
@@ -11,8 +11,8 @@ |
11 | 11 |
#' # Load the sample data from CoGAPS |
12 | 12 |
#' data(SimpSim) |
13 | 13 |
#' # Run plotAtoms |
14 |
-#' plotAtoms(results,type="sampA") |
|
15 |
-#'@export |
|
14 |
+#' plotAtoms(SimpSim.result, type="sampA") |
|
15 |
+#' @export |
|
16 | 16 |
plotAtoms<-function(gapsRes, type='sampA') |
17 | 17 |
{ |
18 | 18 |
if (type == 'sampA') atoms <- gapsRes$atomsASamp |
... | ... |
@@ -12,15 +12,6 @@ |
12 | 12 |
#' @param ... additional graphical parameters to be passed to \code{heatmap.2} |
13 | 13 |
#' @return heatmap of the \code{data} values for the \code{patternMarkers} |
14 | 14 |
#' @seealso \code{\link{heatmap.2}} |
15 |
-#' @examples |
|
16 |
-#' # Load the sample data from CoGAPS |
|
17 |
-#' data(SimpSim) |
|
18 |
-#' # Run patternMarkers and save the outputs |
|
19 |
-#' PM <- patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
|
20 |
-#' Pmatrix=results$Pmean,threshold="all",full=TRUE) |
|
21 |
-#' # Run plotPatternMarkers with the correct argument from 'PM' |
|
22 |
-#' plotPatternMarkers(data=SimpSim.D,patternMarkers=PM$PatternMarkers) |
|
23 |
-#' @export |
|
24 | 15 |
plotPatternMarkers <- function(data=NA, patternMarkers=NA, patternPalette=NA, |
25 | 16 |
sampleNames=NA, samplePalette=NULL, colDenogram=TRUE, heatmapCol="bluered", |
26 | 17 |
scale='row', ...) |
... | ... |
@@ -17,7 +17,6 @@ |
17 | 17 |
#' `main') and graphical parameters (see `par') which are passed to |
18 | 18 |
#' `plot.window()', `title()' and `axis'. |
19 | 19 |
#' @return plot |
20 |
-#' @export |
|
21 | 20 |
plotSmoothPatterns <- function(P, x=NULL, breaks=NULL, breakStyle=TRUE, |
22 | 21 |
orderP=!all(is.null(x)), plotPTS=FALSE, pointCol='black', lineCol='grey', |
23 | 22 |
add=FALSE, ...) |
... | ... |
@@ -5,7 +5,6 @@ |
5 | 5 |
#' for gapsMapRun |
6 | 6 |
#' @return list of two data.frames containing the A matrix estimates or their |
7 | 7 |
#' corresponding standard deviations from output of parallel CoGAPS |
8 |
-#' @export |
|
9 | 8 |
postFixed4Parallel <- function(AP.fixed=NA, setPs=NA) |
10 | 9 |
{ |
11 | 10 |
ASummary <- do.call(rbind,lapply(AP.fixed, function(x) x$Amean)) |
... | ... |
@@ -7,7 +7,6 @@ |
7 | 7 |
#' @param nSets number of sets |
8 | 8 |
#' @return a list containing the \code{nSets} sets solution for Amean under "A", |
9 | 9 |
#' Pmean under "P", and Asd under "Asd" |
10 |
-#' @export |
|
11 | 10 |
reOrderBySet<-function(AP, nFactor, nSets) |
12 | 11 |
{ |
13 | 12 |
P<-do.call(rbind,lapply(AP, function(x) x$Pmean)) |
... | ... |
@@ -26,11 +26,4 @@ calculates the gene set statistics for each |
26 | 26 |
column of A using a Z-score from the elements of the A matrix, |
27 | 27 |
the input gene set, and permutation tests |
28 | 28 |
} |
29 |
-\examples{ |
|
30 |
-# Load the sample data from CoGAPS |
|
31 |
-data(SimpSim) |
|
32 |
-# Run calcCoGAPSStat with the correct arguments from 'results' |
|
33 |
-calcCoGAPSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
34 |
-GStoGenes=GSets, numPerm=500) |
|
35 |
-} |
|
36 | 29 |
|
... | ... |
@@ -31,11 +31,4 @@ calculates the probability that a gene |
31 | 31 |
listed in a gene set behaves like other genes in the set within |
32 | 32 |
the given data set |
33 | 33 |
} |
34 |
-\examples{ |
|
35 |
-# Load the sample data from CoGAPS |
|
36 |
-data('SimpSim') |
|
37 |
-# Run calcGeneGSStat |
|
38 |
-calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
39 |
-GSGenes=GSets[[1]], numPerm=500, nullGenes=TRUE) |
|
40 |
-} |
|
41 | 34 |
|
... | ... |
@@ -34,11 +34,4 @@ membership for each candidate gene in a set specified in \code{GSGenes} by |
34 | 34 |
comparing the inferred activity of that gene to the average activity of the |
35 | 35 |
set. |
36 | 36 |
} |
37 |
-\examples{ |
|
38 |
-# Load the sample data from CoGAPS |
|
39 |
-data('SimpSim') |
|
40 |
-# Run calcGeneGSStat with the correct arguments from 'results' |
|
41 |
-calcGeneGSStat(SimpSim.result$Amean, SimpSim.result$Asd, |
|
42 |
-GSGenes=GSets[[1]], numPerm=500) |
|
43 |
-} |
|
44 | 37 |
|
... | ... |
@@ -71,4 +71,10 @@ list with A and P matrix estimates |
71 | 71 |
\description{ |
72 | 72 |
Backwards Compatibility with v2 |
73 | 73 |
} |
74 |
+\examples{ |
|
75 |
+data(SimpSim) |
|
76 |
+nC <- ncol(SimpSim.D) |
|
77 |
+patterns <- matrix(runif(nC, 0, 1), nrow=1, ncol=nC) |
|
78 |
+result <- gapsMapRun(SimpSim.D, SimpSim.S, FP=patterns, nFactor=3) |
|
79 |
+} |
|
74 | 80 |
|
... | ... |
@@ -27,11 +27,4 @@ genes rankings with a column for each \code{lp} will also be returned. |
27 | 27 |
\description{ |
28 | 28 |
patternMarkers |
29 | 29 |
} |
30 |
-\examples{ |
|
31 |
-# Load the sample data from CoGAPS |
|
32 |
-data(SimpSim) |
|
33 |
-# Run patternMarkers with the correct arguments from 'results' |
|
34 |
-patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
|
35 |
-Pmatrix=results$Pmean,threshold="all",full=TRUE) |
|
36 |
-} |
|
37 | 30 |
|
... | ... |
@@ -34,15 +34,6 @@ heatmap of the \code{data} values for the \code{patternMarkers} |
34 | 34 |
\description{ |
35 | 35 |
plotPatternMarkers |
36 | 36 |
} |
37 |
-\examples{ |
|
38 |
-# Load the sample data from CoGAPS |
|
39 |
-data(SimpSim) |
|
40 |
-# Run patternMarkers and save the outputs |
|
41 |
-PM <- patternMarkers(Amatrix=results$Amean,scaledPmatrix=FALSE, |
|
42 |
-Pmatrix=results$Pmean,threshold="all",full=TRUE) |
|
43 |
-# Run plotPatternMarkers with the correct argument from 'PM' |
|
44 |
-plotPatternMarkers(data=SimpSim.D,patternMarkers=PM$PatternMarkers) |
|
45 |
-} |
|
46 | 37 |
\seealso{ |
47 | 38 |
\code{\link{heatmap.2}} |
48 | 39 |
} |
... | ... |
@@ -69,10 +69,7 @@ Rcpp::NumericMatrix GibbsSampler::getNormedMatrix(char mat) |
69 | 69 |
for (unsigned r = 0; r < mPMatrix.nRow(); ++r) |
70 | 70 |
{ |
71 | 71 |
normVec[r] = gaps::algo::sum(mPMatrix.getRow(r)); |
72 |
- if (normVec[r] == 0) |
|
73 |
- { |
|
74 |
- normVec[r] = 1.0; |
|
75 |
- } |
|
72 |
+ normVec[r] = (normVec[r] == 0) ? 1.f : normVec[r]; |
|
76 | 73 |
} |
77 | 74 |
|
78 | 75 |
if (mat == 'A') |