...
|
...
|
@@ -64,13 +64,18 @@ patternMatch4Parallel <- function(Ptot, nSets, cnt, minNS=NULL, maxNS=NULL,
|
64
|
64
|
indx<-which(unlist(lapply(cc$PByClust,function(x) dim(x)[1]>maxNS)))
|
65
|
65
|
while(length(indx)>0){
|
66
|
66
|
icc<-corcut(cc$PByClust[[indx[1]]],minNS,2,cluster.method)
|
67
|
|
- cc$PByClust[[indx[1]]]<-icc[[2]][[1]]
|
68
|
|
- cc$RtoMeanPattern[[indx[1]]]<-icc[[1]][[1]]
|
69
|
|
- if(length(icc[[2]])>1){
|
70
|
|
- cc$PByClust<-append(cc$PByClust,icc[[2]][2])
|
71
|
|
- cc$RtoMeanPattern<-append(cc$RtoMeanPattern,icc[[1]][2])
|
72
|
|
- }
|
73
|
|
- indx<-which(unlist(lapply(cc$PByClust,function(x) dim(x)[1]>maxNS)))
|
|
67
|
+ if(length(icc[[2]])==0){
|
|
68
|
+ indx<-indx[-1]
|
|
69
|
+ next
|
|
70
|
+ } else{
|
|
71
|
+ cc$PByClust[[indx[1]]]<-icc[[2]][[1]]
|
|
72
|
+ cc$RtoMeanPattern[[indx[1]]]<-icc[[1]][[1]]
|
|
73
|
+ if(length(icc[[2]])>1){
|
|
74
|
+ cc$PByClust<-append(cc$PByClust,icc[[2]][2])
|
|
75
|
+ cc$RtoMeanPattern<-append(cc$RtoMeanPattern,icc[[1]][2])
|
|
76
|
+ }
|
|
77
|
+ indx<-which(unlist(lapply(cc$PByClust,function(x) dim(x)[1]>maxNS)))
|
|
78
|
+ }
|
74
|
79
|
}
|
75
|
80
|
|
76
|
81
|
#weighted.mean
|