#' Plot the P Matrix #' #' @details plots the P matrix in a line plot with error bars #' @param Pmean matrix of mean values of P #' @param Psd matrix of standard deviation values of P #' @return plot #' @examples #' data(SimpSim) #' plotP(SimpSim.result$Pmean, SimpSim.result$Psd) #' @importFrom gplots plotCI #' @export plotP <- function(Pmean, Psd=NULL) { colors <- rainbow(nrow(Pmean)) xlimits <- c(0, ncol(Pmean) + 1) ylimits <- c(0, (max(Pmean) * 1.05)) plot(NULL, xlim=xlimits, ylim=ylimits, ylab="Relative Amplitude") for (i in 1:nrow(Pmean)) { lines(x=1:ncol(Pmean), y=Pmean[i,], col=colors[i]) points(x=1:ncol(Pmean), y=Pmean[i,], col=colors[i], pch=i) } legend("bottom", paste("Pattern", 1:nrow(Pmean), sep = ""), pch = 1:nrow(Pmean), lty=1, cex=0.8, col=colors, bty="y", ncol=5) #Nfactor <- nrow(Pmean) #Nobs <- ncol(Pmean) #RowP <- 1:Nobs #colors <- rainbow(Nfactor) #ylimits <- c(0,(max(Pmean + Psd)*1.05)) # #plotCI(x=RowP, y=Pmean[1,], col=colors[1], uiw=Psd[1,], # ylim=ylimits, type='l', ylab="Relative Amplitude") # #for (i in 2:Nfactor) #{ # #points(RowP, Pmean[i,], col=colors[i], pch=i) # plotCI(RowP, y=Pmean[i,], col=colors[i], uiw=Psd[i,], # add=TRUE) #} # #legend("bottom", paste("Pattern", 1:Nfactor, sep = ""), # pch = 1:Nfactor, lty=1,cex=0.8, col=colors,bty="y",ncol=5) }