Package: CoGAPS Version: 3.3.31 Date: 2018-04-24 Title: Coordinated Gene Activity in Pattern Sets Author: Thomas Sherman, Wai-shing Lee, Conor Kelton, Ondrej Maxian, Jacob Carey, Genevieve Stein-O'Brien, Michael Considine, Maggie Wodicka, John Stansfield, Shawn Sivy, Carlo Colantuoni, Alexander Favorov, Mike Ochs, Elana Fertig Description: Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis. Maintainer: Elana J. Fertig <ejfertig@jhmi.edu>, Thomas D. Sherman <tomsherman159@gmail.com> Depends: R (>= 3.5.0) Imports: BiocParallel, cluster, data.table, methods, gplots, graphics, grDevices, RColorBrewer, Rcpp, S4Vectors, SingleCellExperiment, stats, SummarizedExperiment, tools, utils Suggests: testthat, knitr, rmarkdown, BiocStyle LinkingTo: Rcpp, BH VignetteBuilder: knitr License: GPL (==2) biocViews: GeneExpression, Transcription, GeneSetEnrichment, DifferentialExpression, Bayesian, Clustering, TimeCourse, RNASeq, Microarray, MultipleComparison, DimensionReduction NeedsCompilation: yes RoxygenNote: 6.1.0 Encoding: UTF-8 Collate: 'class-CogapsParams.R' 'CoGAPS.R' 'DistributedCogaps.R' 'HelperFunctions.R' 'Package.R' 'RcppExports.R' 'SubsetData.R' 'class-CogapsResult.R' 'methods-CogapsParams.R' 'methods-CogapsResult.R'