Name Mode Size
..
figures 040000
ClassifyResult-class.html 100644 499 kb
CrossValParams-class.html 100644 16 kb
FeatureSetCollection.html 100644 18 kb
HuRI.html 100644 6 kb
ModellingParams-class.html 100644 14 kb
PredictParams-class.html 100644 7 kb
ROCplot-1.png 100644 80 kb
ROCplot.html 100644 27 kb
Rplot001.png 100644 24 kb
Rplot002.png 100644 24 kb
Rplot003.png 100644 17 kb
Rplot004.png 100644 17 kb
SelectParams-class.html 100644 12 kb
TrainParams-class.html 100644 10 kb
TransformParams-class.html 100644 8 kb
asthma.html 100644 7 kb
available.html 100644 9 kb
calcPerformance.html 100644 20 kb
colCoxTests.html 100644 9 kb
crossValidate-1.png 100644 37 kb
crossValidate.html 100644 1,862 kb
distribution-1.png 100644 36 kb
distribution.html 100644 497 kb
edgesToHubNetworks.html 100644 11 kb
featureSetSummary.html 100644 18 kb
generateCrossValParams.html 100644 8 kb
generateModellingParams.html 100644 14 kb
index.html 100644 17 kb
interactorDifferences.html 100644 17 kb
performancePlot-1.png 100644 41 kb
performancePlot.html 100644 28 kb
plotFeatureClasses-1.png 100644 149 kb
plotFeatureClasses-2.png 100644 41 kb
plotFeatureClasses-3.png 100644 178 kb
plotFeatureClasses.html 100644 31 kb
prepareData.html 100644 10 kb
rankingPlot-1.png 100644 59 kb
rankingPlot.html 100644 31 kb
runTest.html 100644 17 kb
runTests.html 100644 15 kb
samplesMetricMap-1.png 100644 93 kb
samplesMetricMap.html 100644 30 kb
selectionPlot-1.png 100644 71 kb
selectionPlot-2.png 100644 71 kb
selectionPlot-3.png 100644 53 kb
selectionPlot-4.png 100644 53 kb
selectionPlot.html 100644 36 kb
README.md
# ClassifyR: Performance evaluation for multi-view data sets and seamless integration with MultiAssayExperiment and Bioconductor <img src="man/figures/ClassifyRsticker.png" align="right" width=250 style="margin-left: 10px;"> ClassifyR's performance evaluation focuses on model stability and interpretability. Based on repeated cross-validation, it is possible to evaluate feature selection stability and also per-sample prediction accuracy. Also, multiple omics data assays on the same samples are becoming more popular and ClassifyR supports a range of multi-view methods to evaluate which data view is the most predictive and combine data views to evaluate if multiple views provide superior predictive performance to a single data view. ## Installation The recommended method of installing ClassifyR is by using Bioconductor's BiocManager installer: ``` library(BiocManager) install("ClassifyR", dependencies = TRUE) ``` The above code will install all packages that provide feature selection or model-building functionality. If only one or two methods are desired then the dependencies option could be omitted and those packages providing functionality installed manually. ## Website Please visit [the ClassifyR website](https://sydneybiox.github.io/ClassifyR/) to view the main vignette as well as articles that provide more in-depth explanations for various aspects of the package. Details of performance evaluation, multi-view methods and contributing a wrapper for a new algorithm to the package are provided. ## Reference Strbenac D., Mann, G.J., Ormerod, J.T., and Yang, J. Y. H. (2015) ClassifyR: An R package for performance assessment of classification with applications to transcriptomics, *Bioinformatics*.