Name Mode Size
..
ROCplot.R 100644 15 kb
available.R 100755 1 kb
calcPerformance.R 100755 19 kb
classes.R 100644 47 kb
constants.R 100644 5 kb
crissCrossValidate.R 100644 12 kb
crossValidate.R 100644 59 kb
data.R 100644 1 kb
distribution.R 100755 7 kb
edgesToHubNetworks.R 100644 3 kb
featureSetSummary.R 100644 9 kb
getLocationsAndScales.R 100755 1 kb
interactorDifferences.R 100644 5 kb
interfaceClassify.R 100644 1 kb
interfaceCoxPH.R 100644 1 kb
interfaceCoxnet.R 100644 2 kb
interfaceDLDA.R 100644 2 kb
interfaceElasticNetGLM.R 100644 4 kb
interfaceFisherDiscriminant.R 100644 2 kb
interfaceGLM.R 100644 1 kb
interfaceKNN.R 100644 1 kb
interfaceKTSPclassifier.R 100644 3 kb
interfaceMerge.R 100644 0 kb
interfaceMixModels.R 100644 7 kb
interfaceNSC.R 100644 3 kb
interfaceNaiveBayesKernel.R 100644 6 kb
interfacePCA.R 100644 5 kb
interfacePrevalidation.R 100644 8 kb
interfaceRandomForest.R 100644 3 kb
interfaceRandomForestSurvival.R 100644 2 kb
interfaceSVM.R 100644 2 kb
interfaceXGB.R 100644 4 kb
performancePlot.R 100755 12 kb
plotFeatureClasses.R 100755 25 kb
prepareData.R 100644 11 kb
previousSelection.R 100755 1 kb
previousTrained.R 100644 0 kb
randomSelection.R 100644 0 kb
rankingBartlett.R 100644 0 kb
rankingCoxPH.R 100644 5 kb
rankingDMD.R 100644 1 kb
rankingDifferentMeans.R 100644 1 kb
rankingEdgeR.R 100644 1 kb
rankingKolmogorovSmirnov.R 100644 1 kb
rankingKullbackLeibler.R 100644 1 kb
rankingLevene.R 100644 1 kb
rankingLikelihoodRatio.R 100644 1 kb
rankingLimma.R 100644 1 kb
rankingPairsDifferences.R 100644 2 kb
rankingPlot.R 100755 18 kb
runTest.R 100644 21 kb
runTests.R 100644 10 kb
samplesMetricMap.R 100755 48 kb
selectMulti.R 100644 1 kb
selectionPlot.R 100755 27 kb
simpleParams.R 100644 4 kb
subtractFromLocation.R 100755 2 kb
utilities.R 100644 29 kb
README.md
# ClassifyR: Performance evaluation for multi-view data sets and seamless integration with MultiAssayExperiment and Bioconductor <img src="man/figures/ClassifyRsticker.png" align="right" width=250 style="margin-left: 10px;"> ClassifyR's performance evaluation focuses on model stability and interpretability. Based on repeated cross-validation, it is possible to evaluate feature selection stability and also per-sample prediction accuracy. Also, multiple omics data assays on the same samples are becoming more popular and ClassifyR supports a range of multi-view methods to evaluate which data view is the most predictive and combine data views to evaluate if multiple views provide superior predictive performance to a single data view. ## Installation The recommended method of installing ClassifyR is by using Bioconductor's BiocManager installer: ``` library(BiocManager) install("ClassifyR", dependencies = TRUE) ``` The above code will install all packages that provide feature selection or model-building functionality. If only one or two methods are desired then the dependencies option could be omitted and those packages providing functionality installed manually. ## Website Please visit [the ClassifyR website](https://sydneybiox.github.io/ClassifyR/) to view the main vignette as well as articles that provide more in-depth explanations for various aspects of the package. Details of performance evaluation, multi-view methods and contributing a wrapper for a new algorithm to the package are provided. ## Reference Strbenac D., Mann, G.J., Ormerod, J.T., and Yang, J. Y. H. (2015) ClassifyR: An R package for performance assessment of classification with applications to transcriptomics, *Bioinformatics*.