...
|
...
|
@@ -42,7 +42,7 @@
|
42
|
42
|
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
|
43
|
43
|
|
44
|
44
|
|
45
|
|
- <nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light"><div class="container">
|
|
45
|
+ <nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-dark"><div class="container">
|
46
|
46
|
|
47
|
47
|
<a class="navbar-brand me-2" href="index.html">ClassifyR</a>
|
48
|
48
|
|
...
|
...
|
@@ -79,7 +79,7 @@
|
79
|
79
|
<main id="main" class="col-md-9"><div class="section level1">
|
80
|
80
|
<div class="page-header"><h1 id="classifyr-performance-evaluation-for-multi-view-data-sets-and-seamless-integration-with-multiassayexperiment-and-bioconductor">ClassifyR: Performance evaluation for multi-view data sets and seamless integration with MultiAssayExperiment and Bioconductor<a class="anchor" aria-label="anchor" href="#classifyr-performance-evaluation-for-multi-view-data-sets-and-seamless-integration-with-multiassayexperiment-and-bioconductor"></a>
|
81
|
81
|
</h1></div>
|
82
|
|
-<p><img src="reference/figures/ClassifyRsticker.png" align="right"></p>
|
|
82
|
+<p><img src="reference/figures/ClassifyRsticker.png" align="right" width="250" style="margin-left: 10px;"></p>
|
83
|
83
|
<p>ClassifyR’s performance evaluation focuses on model stability and interpretability. Based on repeated cross-validation, it is possible to evaluate feature selection stability and also per-sample prediction accuracy. Also, multiple omics data assays on the same samples are becoming more popular and ClassifyR supports a range of multi-view methods to evaluate which data view is the most predictive and combine data views to evaluate if multiple views provide superior predictive performance to a single data view.</p>
|
84
|
84
|
<div class="section level2">
|
85
|
85
|
<h2 id="installation">Installation<a class="anchor" aria-label="anchor" href="#installation"></a>
|