... | ... |
@@ -384,7 +384,7 @@ setMethod("plotFeatureClasses", "MultiAssayExperiment", |
384 | 384 |
) |
385 | 385 |
} |
386 | 386 |
|
387 |
- MultiAssayExperiment::colData(measurements) <- MultiAssayExperiment::colData(measurements)[colnames(MultiAssayExperiment::colData(measurements)) %in% sampleInfouseFeatures[, 2]] |
|
387 |
+ MultiAssayExperiment::colData(measurements) <- MultiAssayExperiment::colData(measurements)[colnames(MultiAssayExperiment::colData(measurements)) %in% clinicalUseFeatures[, 2]] |
|
388 | 388 |
measurements <- MultiAssayExperiment::wideFormat(measurements, colDataCols = seq_along(MultiAssayExperiment::colData(measurements)), check.names = FALSE, collapse = ':') |
389 | 389 |
measurements <- measurements[, -1, drop = FALSE] # Remove sample IDs. |
390 | 390 |
S4Vectors::mcols(measurements)[, "sourceName"] <- gsub("colDataCols", "clinical", S4Vectors::mcols(measurements)[, "sourceName"]) |
... | ... |
@@ -59,7 +59,7 @@ |
59 | 59 |
#' #{ |
60 | 60 |
#' data(asthma) |
61 | 61 |
#' tuneList <- list(nFeatures = seq(5, 25, 5), performanceType = "Balanced Error") |
62 |
-#' selectParams <- SelectParams(limmaRanking, tuneParams = tuneList) |
|
62 |
+#' selectParams <- SelectParams("limma", tuneParams = tuneList) |
|
63 | 63 |
#' modellingParams <- ModellingParams(selectParams = selectParams) |
64 | 64 |
#' trainIndices <- seq(1, nrow(measurements), 2) |
65 | 65 |
#' testIndices <- seq(2, nrow(measurements), 2) |
... | ... |
@@ -48,7 +48,7 @@ |
48 | 48 |
#' |
49 | 49 |
#' CVparams <- CrossValParams(permutations = 5) |
50 | 50 |
#' tuneList <- list(nFeatures = seq(5, 25, 5), performanceType = "Balanced Error") |
51 |
-#' selectParams <- SelectParams(differentMeansRanking, tuneParams = tuneList) |
|
51 |
+#' selectParams <- SelectParams("t-test", tuneParams = tuneList) |
|
52 | 52 |
#' modellingParams <- ModellingParams(selectParams = selectParams) |
53 | 53 |
#' runTests(measurements, classes, CVparams, modellingParams, |
54 | 54 |
#' DataFrame(characteristic = c("Assay Name", "Classifier Name"), |
... | ... |
@@ -102,7 +102,7 @@ perform each iteration. |
102 | 102 |
#{ |
103 | 103 |
data(asthma) |
104 | 104 |
tuneList <- list(nFeatures = seq(5, 25, 5), performanceType = "Balanced Error") |
105 |
- selectParams <- SelectParams(limmaRanking, tuneParams = tuneList) |
|
105 |
+ selectParams <- SelectParams("limma", tuneParams = tuneList) |
|
106 | 106 |
modellingParams <- ModellingParams(selectParams = selectParams) |
107 | 107 |
trainIndices <- seq(1, nrow(measurements), 2) |
108 | 108 |
testIndices <- seq(2, nrow(measurements), 2) |
... | ... |
@@ -77,7 +77,7 @@ parallel is possible by leveraging the package \code{\link{BiocParallel}}. |
77 | 77 |
|
78 | 78 |
CVparams <- CrossValParams(permutations = 5) |
79 | 79 |
tuneList <- list(nFeatures = seq(5, 25, 5), performanceType = "Balanced Error") |
80 |
- selectParams <- SelectParams(differentMeansRanking, tuneParams = tuneList) |
|
80 |
+ selectParams <- SelectParams("t-test", tuneParams = tuneList) |
|
81 | 81 |
modellingParams <- ModellingParams(selectParams = selectParams) |
82 | 82 |
runTests(measurements, classes, CVparams, modellingParams, |
83 | 83 |
DataFrame(characteristic = c("Assay Name", "Classifier Name"), |