- Prepended S4Vectors:: to mcols calls where necessary for it to work…
... | ... |
@@ -116,7 +116,7 @@ setMethod("crossValidate", "DataFrame", |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
# Which data-types or data-views are present? |
119 |
- assayIDs <- unique(mcols(measurements)$assay) |
|
119 |
+ assayIDs <- unique(S4Vectors::mcols(measurements)$assay) |
|
120 | 120 |
if(is.null(assayIDs)) assayIDs <- 1 |
121 | 121 |
|
122 | 122 |
# Check that other variables are in the right format and fix |
... | ... |
@@ -158,7 +158,7 @@ setMethod("crossValidate", "DataFrame", |
158 | 158 |
# Loop over selectors |
159 | 159 |
set.seed(seed) |
160 | 160 |
measurementsUse <- measurements |
161 |
- if(assayIndex != 1) measurementsUse <- measurements[, mcols(measurements)[, "assay"] == assayIndex, drop = FALSE] |
|
161 |
+ if(assayIndex != 1) measurementsUse <- measurements[, S4Vectors::mcols(measurements)[, "assay"] == assayIndex, drop = FALSE] |
|
162 | 162 |
CV( |
163 | 163 |
measurements = measurementsUse, outcome = outcome, |
164 | 164 |
assayIDs = assayIndex, |
... | ... |
@@ -196,7 +196,7 @@ setMethod("crossValidate", "DataFrame", |
196 | 196 |
if(!is.list(assayCombinations) && assayCombinations[1] == "all") assayCombinations <- do.call("c", sapply(seq_along(assayIDs), function(nChoose) combn(assayIDs, nChoose, simplify = FALSE))) |
197 | 197 |
|
198 | 198 |
result <- sapply(assayCombinations, function(assayIndex){ |
199 |
- CV(measurements = measurements[, mcols(measurements)[["assay"]] %in% assayIndex], |
|
199 |
+ CV(measurements = measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayIndex], |
|
200 | 200 |
outcome = outcome, assayIDs = assayIndex, |
201 | 201 |
nFeatures = nFeatures[assayIndex], |
202 | 202 |
selectionMethod = selectionMethod[assayIndex], |
... | ... |
@@ -229,7 +229,7 @@ setMethod("crossValidate", "DataFrame", |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
result <- sapply(assayCombinations, function(assayIndex){ |
232 |
- CV(measurements = measurements[, mcols(measurements)[["assay"]] %in% assayIndex], |
|
232 |
+ CV(measurements = measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayIndex], |
|
233 | 233 |
outcome = outcome, assayIDs = assayIndex, |
234 | 234 |
nFeatures = nFeatures[assayIndex], |
235 | 235 |
selectionMethod = selectionMethod[assayIndex], |
... | ... |
@@ -263,7 +263,7 @@ setMethod("crossValidate", "DataFrame", |
263 | 263 |
|
264 | 264 |
|
265 | 265 |
result <- sapply(assayCombinations, function(assayIndex){ |
266 |
- CV(measurements = measurements[, mcols(measurements)$assay %in% assayIndex], |
|
266 |
+ CV(measurements = measurements[, S4Vectors::mcols(measurements)$assay %in% assayIndex], |
|
267 | 267 |
outcome = outcome, assayIDs = assayIndex, |
268 | 268 |
nFeatures = nFeatures[assayIndex], |
269 | 269 |
selectionMethod = selectionMethod[assayIndex], |
... | ... |
@@ -427,14 +427,14 @@ setMethod("crossValidate", "list", |
427 | 427 |
df_list <- sapply(measurements, S4Vectors::DataFrame, check.names = FALSE) |
428 | 428 |
|
429 | 429 |
df_list <- mapply(function(meas, nam){ |
430 |
- mcols(meas)$assay <- nam |
|
431 |
- mcols(meas)$feature <- colnames(meas) |
|
430 |
+ S4Vectors::mcols(meas)$assay <- nam |
|
431 |
+ S4Vectors::mcols(meas)$feature <- colnames(meas) |
|
432 | 432 |
meas |
433 | 433 |
}, df_list, names(df_list)) |
434 | 434 |
|
435 | 435 |
|
436 | 436 |
combined_df <- do.call("cbind", df_list) |
437 |
- colnames(combined_df) <- mcols(combined_df)$feature |
|
437 |
+ colnames(combined_df) <- S4Vectors::mcols(combined_df)$feature |
|
438 | 438 |
|
439 | 439 |
|
440 | 440 |
|
... | ... |
@@ -459,8 +459,8 @@ setMethod("crossValidate", "list", |
459 | 459 |
###################################### |
460 | 460 |
cleanNFeatures <- function(nFeatures, measurements){ |
461 | 461 |
#### Clean up |
462 |
- if(!is.null(mcols(measurements)$assay)) |
|
463 |
- obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
|
462 |
+ if(!is.null(S4Vectors::mcols(measurements)$assay)) |
|
463 |
+ obsFeatures <- unlist(as.list(table(S4Vectors::mcols(measurements)[, "assay"]))) |
|
464 | 464 |
else obsFeatures <- ncol(measurements) |
465 | 465 |
if(is.null(nFeatures) || length(nFeatures) == 1 && nFeatures == "all") nFeatures <- as.list(obsFeatures) |
466 | 466 |
if(is.null(names(nFeatures)) && length(nFeatures) == 1) nFeatures <- as.list(pmin(obsFeatures, nFeatures)) |
... | ... |
@@ -476,8 +476,8 @@ cleanNFeatures <- function(nFeatures, measurements){ |
476 | 476 |
###################################### |
477 | 477 |
cleanSelectionMethod <- function(selectionMethod, measurements){ |
478 | 478 |
#### Clean up |
479 |
- if(!is.null(mcols(measurements)$assay)) |
|
480 |
- obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
|
479 |
+ if(!is.null(S4Vectors::mcols(measurements)$assay)) |
|
480 |
+ obsFeatures <- unlist(as.list(table(S4Vectors::mcols(measurements)[, "assay"]))) |
|
481 | 481 |
else return(list(selectionMethod)) |
482 | 482 |
|
483 | 483 |
if(is.null(names(selectionMethod)) & length(selectionMethod) == 1 & !is.null(names(obsFeatures))) selectionMethod <- sapply(names(obsFeatures), function(x) selectionMethod, simplify = FALSE) |
... | ... |
@@ -492,8 +492,8 @@ cleanSelectionMethod <- function(selectionMethod, measurements){ |
492 | 492 |
###################################### |
493 | 493 |
cleanClassifier <- function(classifier, measurements, nFeatures){ |
494 | 494 |
#### Clean up |
495 |
- if(!is.null(mcols(measurements)$assay)) |
|
496 |
- obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
|
495 |
+ if(!is.null(S4Vectors::mcols(measurements)$assay)) |
|
496 |
+ obsFeatures <- unlist(as.list(table(S4Vectors::mcols(measurements)[, "assay"]))) |
|
497 | 497 |
else return(list(classifier)) |
498 | 498 |
|
499 | 499 |
if(is.null(names(classifier)) & length(classifier) == 1 & !is.null(names(obsFeatures))) classifier <- sapply(names(obsFeatures), function(x)classifier, simplify = FALSE) |
... | ... |
@@ -599,7 +599,7 @@ generateModellingParams <- function(assayIDs, |
599 | 599 |
|
600 | 600 |
|
601 | 601 |
|
602 |
- if(length(assayIDs) > 1) obsFeatures <- sum(mcols(measurements)[, "assay"] %in% assayIDs) |
|
602 |
+ if(length(assayIDs) > 1) obsFeatures <- sum(S4Vectors::mcols(measurements)[, "assay"] %in% assayIDs) |
|
603 | 603 |
else obsFeatures <- ncol(measurements) |
604 | 604 |
|
605 | 605 |
|
... | ... |
@@ -670,7 +670,7 @@ generateMultiviewParams <- function(assayIDs, |
670 | 670 |
if(length(classifier) > 1) classifier <- classifier[[1]] |
671 | 671 |
|
672 | 672 |
# Split measurements up by assay. |
673 |
- assayTrain <- sapply(assayIDs, function(assayID) if(assayID == 1) measurements else measurements[, mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
673 |
+ assayTrain <- sapply(assayIDs, function(assayID) if(assayID == 1) measurements else measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
674 | 674 |
|
675 | 675 |
# Generate params for each assay. This could be extended to have different selectionMethods for each type |
676 | 676 |
paramsAssays <- mapply(generateModellingParams, |
... | ... |
@@ -709,7 +709,7 @@ generateMultiviewParams <- function(assayIDs, |
709 | 709 |
if(multiViewMethod == "prevalidation"){ |
710 | 710 |
|
711 | 711 |
# Split measurements up by assay. |
712 |
- assayTrain <- sapply(assayIDs, function(assayID) measurements[, mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
712 |
+ assayTrain <- sapply(assayIDs, function(assayID) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
713 | 713 |
|
714 | 714 |
# Generate params for each assay. This could be extended to have different selectionMethods for each type |
715 | 715 |
paramsAssays <- mapply(generateModellingParams, |
... | ... |
@@ -738,7 +738,7 @@ generateMultiviewParams <- function(assayIDs, |
738 | 738 |
if(multiViewMethod == "prevalidation"){ |
739 | 739 |
|
740 | 740 |
# Split measurements up by assay. |
741 |
- assayTrain <- sapply(assayIDs, function(assayID) measurements[, mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
741 |
+ assayTrain <- sapply(assayIDs, function(assayID) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
742 | 742 |
|
743 | 743 |
# Generate params for each assay. This could be extended to have different selectionMethods for each type |
744 | 744 |
paramsAssays <- mapply(generateModellingParams, |
... | ... |
@@ -768,7 +768,7 @@ generateMultiviewParams <- function(assayIDs, |
768 | 768 |
if(multiViewMethod == "PCA"){ |
769 | 769 |
|
770 | 770 |
# Split measurements up by assay. |
771 |
- assayTrain <- sapply(assayIDs, function(assayID) measurements[, mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
771 |
+ assayTrain <- sapply(assayIDs, function(assayID) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
772 | 772 |
|
773 | 773 |
# Generate params for each assay. This could be extended to have different selectionMethods for each type |
774 | 774 |
paramsClinical <- list(clinical = generateModellingParams( |
... | ... |
@@ -906,7 +906,7 @@ train.DataFrame <- function(x, outcomeTrain, classifier = "randomForest", perfor |
906 | 906 |
outcomeTrain <- measurementsAndOutcome[["outcome"]] |
907 | 907 |
|
908 | 908 |
classifier <- cleanClassifier(classifier = classifier, measurements = measurements) |
909 |
- if(assayIDs == "all") assayIDs <- unique(mcols(measurements)[, "assay"]) |
|
909 |
+ if(assayIDs == "all") assayIDs <- unique(S4Vectors::mcols(measurements)[, "assay"]) |
|
910 | 910 |
if(is.null(assayIDs)) assayIDs <- 1 |
911 | 911 |
names(assayIDs) <- assayIDs |
912 | 912 |
names(classifier) <- assayIDs |
... | ... |
@@ -919,7 +919,7 @@ train.DataFrame <- function(x, outcomeTrain, classifier = "randomForest", perfor |
919 | 919 |
# Loop over classifiers |
920 | 920 |
|
921 | 921 |
measurementsUse <- measurements |
922 |
- if(assayIndex != 1) measurementsUse <- measurements[, mcols(measurements)[, "assay"] == assayIndex, drop = FALSE] |
|
922 |
+ if(assayIndex != 1) measurementsUse <- measurements[, S4Vectors::mcols(measurements)[, "assay"] == assayIndex, drop = FALSE] |
|
923 | 923 |
|
924 | 924 |
classifierParams <- .classifierKeywordToParams(classifierForAssay) |
925 | 925 |
if(!is.null(classifierParams$trainParams@tuneParams)) |
... | ... |
@@ -950,7 +950,7 @@ train.DataFrame <- function(x, outcomeTrain, classifier = "randomForest", perfor |
950 | 950 |
|
951 | 951 |
### Merging or binding to combine data |
952 | 952 |
if(multiViewMethod == "merge"){ |
953 |
- measurementsUse <- measurements[, mcols(measurements)[["assay"]] %in% assayIDs] |
|
953 |
+ measurementsUse <- measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayIDs] |
|
954 | 954 |
model <- .doTrain(measurementsUse, outcomeTrain, NULL, NULL, crossValParams, modellingParams, verbose = 0)[["model"]] |
955 | 955 |
class(model) <- c("trainedByClassifyR", class(model)) |
956 | 956 |
} |
... | ... |
@@ -959,7 +959,7 @@ train.DataFrame <- function(x, outcomeTrain, classifier = "randomForest", perfor |
959 | 959 |
### Prevalidation to combine data |
960 | 960 |
if(multiViewMethod == "prevalidation"){ |
961 | 961 |
# Split measurements up by assay. |
962 |
- assayTrain <- sapply(assayIDs, function(assayID) measurements[, mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
962 |
+ assayTrain <- sapply(assayIDs, function(assayID) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayID], simplify = FALSE) |
|
963 | 963 |
|
964 | 964 |
# Generate params for each assay. This could be extended to have different selectionMethods for each type |
965 | 965 |
paramsAssays <- mapply(generateModellingParams, |
... | ... |
@@ -980,10 +980,10 @@ train.DataFrame <- function(x, outcomeTrain, classifier = "randomForest", perfor |
980 | 980 |
|
981 | 981 |
### Principal Components Analysis to combine data |
982 | 982 |
if(multiViewMethod == "PCA"){ |
983 |
- measurementsUse <- measurements[, mcols(measurements)[["assay"]] %in% assayIDs] |
|
983 |
+ measurementsUse <- measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assayIDs] |
|
984 | 984 |
paramsClinical <- list(clinical = generateModellingParams( |
985 | 985 |
assayIDs = "clinical", |
986 |
- measurements = measurements[, mcols(measurements)[["assay"]] == "clinical"], |
|
986 |
+ measurements = measurements[, S4Vectors::mcols(measurements)[["assay"]] == "clinical"], |
|
987 | 987 |
classifier = classifier["clinical"], |
988 | 988 |
multiViewMethod = "none")) |
989 | 989 |
|
... | ... |
@@ -1020,8 +1020,8 @@ train.list <- function(x, outcomeTrain, ...) |
1020 | 1020 |
df_list <- sapply(x, S4Vectors::DataFrame) |
1021 | 1021 |
|
1022 | 1022 |
df_list <- mapply(function(meas, nam){ |
1023 |
- mcols(meas)$assay <- nam |
|
1024 |
- mcols(meas)$feature <- colnames(meas) |
|
1023 |
+ S4Vectors::mcols(meas)$assay <- nam |
|
1024 |
+ S4Vectors::mcols(meas)$feature <- colnames(meas) |
|
1025 | 1025 |
meas |
1026 | 1026 |
}, df_list, names(df_list)) |
1027 | 1027 |
|
... | ... |
@@ -1070,8 +1070,8 @@ predict.trainedByClassifyR <- function(object, newData, ...) |
1070 | 1070 |
} else if(is.list(newData) && !is(object, "listOfModels")) # Don't check all those conditions that train function does. |
1071 | 1071 |
{ # Merge the list of data tables and keep track of assay names in columns' metadata. |
1072 | 1072 |
newData <- mapply(function(meas, nam){ |
1073 |
- mcols(meas)$assay <- nam |
|
1074 |
- mcols(meas)$feature <- colnames(meas) |
|
1073 |
+ S4Vectors::mcols(meas)$assay <- nam |
|
1074 |
+ S4Vectors::mcols(meas)$feature <- colnames(meas) |
|
1075 | 1075 |
meas |
1076 | 1076 |
}, newData, names(newData)) |
1077 | 1077 |
newData <- do.call(cbind, newData) |
... | ... |
@@ -37,8 +37,8 @@ pcaTrainInterface <- function(measurements, classes, params, nFeatures, ...) |
37 | 37 |
### |
38 | 38 |
|
39 | 39 |
pcaVar <- S4Vectors::DataFrame(pcaVar) |
40 |
- mcols(pcaVar)$assay = "PCA" |
|
41 |
- mcols(pcaVar)$feature = colnames(pcaVar) |
|
40 |
+ S4Vectors::mcols(pcaVar)$assay = "PCA" |
|
41 |
+ S4Vectors::mcols(pcaVar)$feature = colnames(pcaVar) |
|
42 | 42 |
|
43 | 43 |
fullTrain = cbind(assayTrain[["clinical"]], pcaVar) |
44 | 44 |
|
... | ... |
@@ -87,7 +87,7 @@ pcaPredictInterface <- function(fullModel, test, ..., returnType = "both", verbo |
87 | 87 |
fullModel <- fullModel@fullModel[[1]] |
88 | 88 |
|
89 | 89 |
#Split my test data into a list of the different assays |
90 |
- assayTest <- sapply(unique(mcols(test)[["assay"]]), function(assay) test[, mcols(test)[["assay"]] %in% assay], simplify = FALSE) |
|
90 |
+ assayTest <- sapply(unique(S4Vectors::mcols(test)[["assay"]]), function(assay) test[, S4Vectors::mcols(test)[["assay"]] %in% assay], simplify = FALSE) |
|
91 | 91 |
|
92 | 92 |
# Pull out my PCA models |
93 | 93 |
pcaModels <- fullModel$pcaModels |
... | ... |
@@ -101,8 +101,8 @@ pcaPredictInterface <- function(fullModel, test, ..., returnType = "both", verbo |
101 | 101 |
pcaVar <- do.call(cbind, pcaVar) |
102 | 102 |
|
103 | 103 |
pcaVar <- S4Vectors::DataFrame(pcaVar) |
104 |
- mcols(pcaVar)$assay = "PCA" |
|
105 |
- mcols(pcaVar)$feature = colnames(pcaVar) |
|
104 |
+ S4Vectors::mcols(pcaVar)$assay = "PCA" |
|
105 |
+ S4Vectors::mcols(pcaVar)$feature = colnames(pcaVar) |
|
106 | 106 |
|
107 | 107 |
# Merge my PCA stuff with my clinical data |
108 | 108 |
fullTest = cbind(assayTest[["clinical"]], pcaVar) |
... | ... |
@@ -81,8 +81,8 @@ prevalTrainInterface <- function(measurements, classes, params, ...) |
81 | 81 |
#fullTrain = cbind(assayTrain[["clinical"]][,selectedFeaturesClinical], prevalidationTrain[rownames(assayTrain[["clinical"]]), , drop = FALSE]) |
82 | 82 |
|
83 | 83 |
prevalidationTrain <- S4Vectors::DataFrame(prevalidationTrain) |
84 |
- mcols(prevalidationTrain)$assay = "prevalidation" |
|
85 |
- mcols(prevalidationTrain)$feature = colnames(prevalidationTrain) |
|
84 |
+ S4Vectors::mcols(prevalidationTrain)$assay = "prevalidation" |
|
85 |
+ S4Vectors::mcols(prevalidationTrain)$feature = colnames(prevalidationTrain) |
|
86 | 86 |
|
87 | 87 |
|
88 | 88 |
### |
... | ... |
@@ -142,7 +142,7 @@ prevalTrainInterface <- function(measurements, classes, params, ...) |
142 | 142 |
prevalPredictInterface <- function(fullModel, test, ..., returnType = "both", verbose = 0) |
143 | 143 |
{ |
144 | 144 |
fullModel <- fullModel@fullModel[[1]] |
145 |
- assayTest <- sapply(unique(mcols(test)[["assay"]]), function(assay) test[, mcols(test)[["assay"]] %in% assay], simplify = FALSE) |
|
145 |
+ assayTest <- sapply(unique(S4Vectors::mcols(test)[["assay"]]), function(assay) test[, S4Vectors::mcols(test)[["assay"]] %in% assay], simplify = FALSE) |
|
146 | 146 |
|
147 | 147 |
prevalidationModels <- fullModel$prevalidationModels |
148 | 148 |
modelPredictionFunctions <- fullModel$modellingParams |
... | ... |
@@ -157,8 +157,8 @@ prevalPredictInterface <- function(fullModel, test, ..., returnType = "both", ve |
157 | 157 |
extractPrevalidation() |
158 | 158 |
|
159 | 159 |
prevalidationPredict <- S4Vectors::DataFrame(prevalidationPredict) |
160 |
- mcols(prevalidationPredict)$assay = "prevalidation" |
|
161 |
- mcols(prevalidationPredict)$feature = colnames(prevalidationPredict) |
|
160 |
+ S4Vectors::mcols(prevalidationPredict)$assay = "prevalidation" |
|
161 |
+ S4Vectors::mcols(prevalidationPredict)$feature = colnames(prevalidationPredict) |
|
162 | 162 |
|
163 | 163 |
fullTest = cbind(assayTest[["clinical"]], prevalidationPredict[rownames(assayTest[["clinical"]]), , drop = FALSE]) |
164 | 164 |
|
... | ... |
@@ -64,7 +64,7 @@ setMethod("prepareData", "DataFrame", |
64 | 64 |
if(!all(colnames(measurements) == make.names(colnames(measurements)))) |
65 | 65 |
{ |
66 | 66 |
warning("Unsafe feature names in input data. Converted into safe names.") |
67 |
- mcols(measurements)$feature <- colnames(measurements) # Save the originals. |
|
67 |
+ S4Vectors::mcols(measurements)$feature <- colnames(measurements) # Save the originals. |
|
68 | 68 |
colnames(measurements) <- make.names(colnames(measurements)) # Ensure column names are safe names. |
69 | 69 |
} |
70 | 70 |
|