... | ... |
@@ -72,10 +72,10 @@ Collate: |
72 | 72 |
'rankingLimma.R' |
73 | 73 |
'rankingPairsDifferences.R' |
74 | 74 |
'rankingPlot.R' |
75 |
- 'rankingSelectMulti.R' |
|
76 | 75 |
'runTest.R' |
77 | 76 |
'runTests.R' |
78 | 77 |
'samplesMetricMap.R' |
78 |
+ 'selectMulti.R' |
|
79 | 79 |
'selectionPlot.R' |
80 | 80 |
'simpleParams.R' |
81 | 81 |
'subtractFromLocation.R' |
... | ... |
@@ -165,6 +165,7 @@ setMethod("crossValidate", "DataFrame", |
165 | 165 |
set.seed(seed) |
166 | 166 |
measurementsUse <- measurements |
167 | 167 |
if(!is.null(mcols(measurements))) measurementsUse <- measurements[, mcols(measurements)[, "dataset"] == dataIndex, drop = FALSE] |
168 |
+ |
|
168 | 169 |
CV( |
169 | 170 |
measurements = measurementsUse, classes = classes, |
170 | 171 |
nFeatures = nFeatures[dataIndex], |
... | ... |
@@ -233,7 +234,7 @@ setMethod("crossValidate", "DataFrame", |
233 | 234 |
|
234 | 235 |
|
235 | 236 |
if(is.null(dataCombinations)){ |
236 |
- dataCombinations <- do.call("c", sapply(seq_len(length(datasetIDs)),function(n)combn(datasetIDs, n, simplify = FALSE))) |
|
237 |
+ dataCombinations <- do.call("c", sapply(seq_along(datasetIDs),function(n)combn(datasetIDs, n, simplify = FALSE))) |
|
237 | 238 |
dataCombinations <- dataCombinations[sapply(dataCombinations, function(x)"clinical"%in%x, simplify = TRUE)] |
238 | 239 |
if(length(dataCombinations)==0) stop("No dataCombinations with `clinical` data") |
239 | 240 |
} |
... | ... |
@@ -267,7 +268,7 @@ setMethod("crossValidate", "DataFrame", |
267 | 268 |
|
268 | 269 |
|
269 | 270 |
if(is.null(dataCombinations)){ |
270 |
- dataCombinations <- do.call("c", sapply(seq_len(length(datasetIDs)),function(n)combn(datasetIDs, n, simplify = FALSE))) |
|
271 |
+ dataCombinations <- do.call("c", sapply(seq_along(datasetIDs),function(n)combn(datasetIDs, n, simplify = FALSE))) |
|
271 | 272 |
dataCombinations <- dataCombinations[sapply(dataCombinations, function(x)"clinical"%in%x, simplify = TRUE)] |
272 | 273 |
if(length(dataCombinations)==0) stop("No dataCombinations with `clinical` data") |
273 | 274 |
} |
... | ... |
@@ -611,8 +612,6 @@ generateModellingParams <- function(datasetIDs, |
611 | 612 |
classifier, |
612 | 613 |
multiViewMethod = "none" |
613 | 614 |
){ |
614 |
- |
|
615 |
- |
|
616 | 615 |
if(multiViewMethod != "none") { |
617 | 616 |
params <- generateMultiviewParams(datasetIDs, |
618 | 617 |
measurements, |
... | ... |
@@ -627,7 +626,8 @@ generateModellingParams <- function(datasetIDs, |
627 | 626 |
|
628 | 627 |
|
629 | 628 |
|
630 |
- obsFeatures <- sum(mcols(measurements)[, "dataset"] %in% datasetIDs) |
|
629 |
+ if(length(datasetIDs) > 1) obsFeatures <- sum(mcols(measurements)[, "dataset"] %in% datasetIDs) |
|
630 |
+ else obsFeatures <- ncol(measurements) |
|
631 | 631 |
|
632 | 632 |
|
633 | 633 |
nFeatures <- unlist(nFeatures) |
... | ... |
@@ -146,6 +146,7 @@ setMethod("SVMpredictInterface", c("svm", "DataFrame"), function(model, measurem |
146 | 146 |
|
147 | 147 |
# Prediction function depends on test data having same set of columns in same order as |
148 | 148 |
# selected features used for training. |
149 |
+ colnames(measurementsTest) <- make.names(colnames(measurementsTest)) |
|
149 | 150 |
measurementsTest <- measurementsTest[, colnames(model[["SV"]])] |
150 | 151 |
classPredictions <- predict(model, measurementsTest, probability = TRUE) |
151 | 152 |
|
... | ... |
@@ -31,9 +31,8 @@ |
31 | 31 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
32 | 32 |
#' progress messages to give. This function only prints progress messages if |
33 | 33 |
#' the value is 3. |
34 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
35 |
-#' features, from the most promising features in the first position to the |
|
36 |
-#' least promising feature in the last position. |
|
34 |
+#' @return A vector of feature indices, from the most promising features in |
|
35 |
+#' the first position to the least promising feature in the last position. |
|
37 | 36 |
#' @author Dario Strbenac |
38 | 37 |
#' @examples |
39 | 38 |
#' |
... | ... |
@@ -29,9 +29,8 @@ |
29 | 29 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
30 | 30 |
#' progress messages to give. This function only prints progress messages if |
31 | 31 |
#' the value is 3. |
32 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
33 |
-#' features, from the most promising features in the first position to the |
|
34 |
-#' least promising feature in the last position. |
|
32 |
+#' @return A vector of feature indicies, from the most promising features in the |
|
33 |
+#' first position to the least promising feature in the last position. |
|
35 | 34 |
#' @importFrom survival coxph |
36 | 35 |
#' @rdname coxphRanking |
37 | 36 |
#' @usage NULL |
... | ... |
@@ -32,9 +32,8 @@ |
32 | 32 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
33 | 33 |
#' progress messages to give. This function only prints progress messages if |
34 | 34 |
#' the value is 3. |
35 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
36 |
-#' features, from the most promising features in the first position to the |
|
37 |
-#' least promising feature in the last position. |
|
35 |
+#' @return A vector of feature indices, from the most promising features in the |
|
36 |
+#' first position to the least promising feature in the last position. |
|
38 | 37 |
#' @author Dario Strbenac |
39 | 38 |
#' @examples |
40 | 39 |
#' |
... | ... |
@@ -38,9 +38,8 @@ |
38 | 38 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
39 | 39 |
#' progress messages to give. This function only prints progress messages if |
40 | 40 |
#' the value is 3. |
41 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
42 |
-#' features, from the most promising features in the first position to the |
|
43 |
-#' least promising feature in the last position. |
|
41 |
+#' @return A vector of feature indices, from the most promising features in the |
|
42 |
+#' first position to the least promising feature in the last position. |
|
44 | 43 |
#' @author Dario Strbenac |
45 | 44 |
#' @references edgeR: a Bioconductor package for differential expression |
46 | 45 |
#' analysis of digital gene expression data, Mark D. Robinson, Davis McCarthy, |
... | ... |
@@ -25,9 +25,8 @@ |
25 | 25 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
26 | 26 |
#' progress messages to give. This function only prints progress messages if |
27 | 27 |
#' the value is 3. |
28 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
29 |
-#' features, from the most promising features in the first position to the |
|
30 |
-#' least promising feature in the last position. |
|
28 |
+#' @return A vector of feature indices, from the most promising features in the |
|
29 |
+#' first position to the least promising feature in the last position. |
|
31 | 30 |
#' @author Dario Strbenac |
32 | 31 |
#' @examples |
33 | 32 |
#' |
... | ... |
@@ -34,9 +34,8 @@ |
34 | 34 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
35 | 35 |
#' progress messages to give. This function only prints progress messages if |
36 | 36 |
#' the value is 3. |
37 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
38 |
-#' features, from the most promising features in the first position to the |
|
39 |
-#' least promising feature in the last position. |
|
37 |
+#' @return A vector of feature indices, from the most promising features in the |
|
38 |
+#' first position to the least promising feature in the last position. |
|
40 | 39 |
#' @author Dario Strbenac |
41 | 40 |
#' @examples |
42 | 41 |
#' |
... | ... |
@@ -26,9 +26,8 @@ |
26 | 26 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
27 | 27 |
#' progress messages to give. This function only prints progress messages if |
28 | 28 |
#' the value is 3. |
29 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
30 |
-#' features, from the most promising features in the first position to the |
|
31 |
-#' least promising feature in the last position. |
|
29 |
+#' @return A vector of feature indices, from the most promising features in the |
|
30 |
+#' first position to the least promising feature in the last position. |
|
32 | 31 |
#' @author Dario Strbenac |
33 | 32 |
#' @examples |
34 | 33 |
#' |
... | ... |
@@ -37,9 +37,8 @@ |
37 | 37 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
38 | 38 |
#' progress messages to give. This function only prints progress messages if |
39 | 39 |
#' the value is 3. |
40 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
41 |
-#' features, from the most promising features in the first position to the |
|
42 |
-#' least promising feature in the last position. |
|
40 |
+#' @return A vector of feature indices, from the most promising features in the |
|
41 |
+#' first position to the least promising feature in the last position. |
|
43 | 42 |
#' @author Dario Strbenac |
44 | 43 |
#' @examples |
45 | 44 |
#' |
... | ... |
@@ -25,9 +25,8 @@ |
25 | 25 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
26 | 26 |
#' progress messages to give. This function only prints progress messages if |
27 | 27 |
#' the value is 3. |
28 |
-#' @return A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
29 |
-#' features, from the most promising features in the first position to the |
|
30 |
-#' least promising feature in the last position. |
|
28 |
+#' @return A vector of feature indicies, from the most promising features in |
|
29 |
+#' the first position to the least promising feature in the last position. |
|
31 | 30 |
#' @author Dario Strbenac |
32 | 31 |
#' @references Limma: linear models for microarray data, Gordon Smyth, 2005, |
33 | 32 |
#' In: Bioinformatics and Computational Biology Solutions using R and |
... | ... |
@@ -31,7 +31,7 @@ |
31 | 31 |
#' @param verbose Default: 3. A number between 0 and 3 for the amount of |
32 | 32 |
#' progress messages to give. This function only prints progress messages if |
33 | 33 |
#' the value is 3. |
34 |
-#' @return A \code{\link{Pairs}} object, from the most promising feature pair |
|
34 |
+#' @return A vector of feature indices, from the most promising feature pair |
|
35 | 35 |
#' in the first position to the least promising feature pair in the last |
36 | 36 |
#' position. |
37 | 37 |
#' @author Dario Strbenac |
... | ... |
@@ -119,9 +119,9 @@ function(measurementsTrain, outcomesTrain, measurementsTest, outcomesTest, |
119 | 119 |
{ |
120 | 120 |
S4Vectors::mcols(measurementsTrain) <- featuresInfo[, c("Renamed Dataset", "Renamed Feature")] |
121 | 121 |
S4Vectors::mcols(measurementsTest) <- featuresInfo[, c("Renamed Dataset", "Renamed Feature")] |
122 |
+ colnames(measurementsTrain) <- colnames(measurementsTest) <- paste(featuresInfo[["Renamed Dataset"]], featuresInfo[["Renamed Feature"]], sep = '') |
|
122 | 123 |
} else { |
123 |
- colnames(measurementsTrain) <- featuresInfo[, "Renamed Feature"] |
|
124 |
- colnames(measurementsTest) <- featuresInfo[, "Renamed Feature"] |
|
124 |
+ colnames(measurementsTrain) <- colnames(measurementsTest) <- featuresInfo[, "Renamed Feature"] |
|
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
... | ... |
@@ -185,8 +185,11 @@ input data. Autmomatically reducing to smaller number.") |
185 | 185 |
tuneDetailsSelect <- topFeatures[[3]] |
186 | 186 |
|
187 | 187 |
if(modellingParams@selectParams@subsetToSelections == TRUE) |
188 |
+ { |
|
188 | 189 |
measurementsTrain <- measurementsTrain[, selectedFeaturesIndices, drop = FALSE] |
189 |
- } |
|
190 |
+ measurementsTest <- measurementsTest[, selectedFeaturesIndices, drop = FALSE] |
|
191 |
+ } |
|
192 |
+ } |
|
190 | 193 |
|
191 | 194 |
# Training stage. |
192 | 195 |
if(length(modellingParams@trainParams@intermediate) > 0) |
... | ... |
@@ -232,25 +235,16 @@ input data. Autmomatically reducing to smaller number.") |
232 | 235 |
importanceTable <- NULL |
233 | 236 |
if(is.numeric(.iteration) && modellingParams@doImportance == TRUE) |
234 | 237 |
{ |
235 |
- nSelected <- ifelse(is.null(ncol(selectedFeatures)), length(selectedFeatures), nrow(selectedFeatures)) |
|
236 | 238 |
performanceMP <- modellingParams@selectParams@tuneParams[["performanceType"]] |
237 | 239 |
performanceType <- ifelse(!is.null(performanceMP), performanceMP, "Balanced Error") |
238 |
- performancesWithoutEach <- sapply(1:nSelected, function(selectedIndex) |
|
240 |
+ performancesWithoutEach <- sapply(selectedFeaturesIndices, function(selectedIndex) |
|
239 | 241 |
{ |
240 |
- if(is.null(S4Vectors::mcols(measurementsTrain))) |
|
241 |
- { # Input was ordinary matrix or DataFrame. |
|
242 |
- measurementsTrainLess1 <- measurementsTrain[, selectedFeatures[-selectedIndex], drop = FALSE] |
|
243 |
- } else { # Input was MultiAssayExperiment. # Match the selected features to the data frame columns |
|
244 |
- selectedIDs <- do.call(paste, selectedFeatures[-selectedIndex, ]) |
|
245 |
- featuresIDs <- do.call(paste, S4Vectors::mcols(measurementsTrain)[, c("dataset", "feature")]) |
|
246 |
- useColumns <- match(selectedIDs, featuresIDs) |
|
247 |
- measurementsTrainLess1 <- measurementsTrain[, useColumns, drop = FALSE] |
|
248 |
- } |
|
249 |
- |
|
250 |
- modelWithoutOne <- tryCatch(.doTrain(measurementsTrainLess1, outcomesTrain, measurementsTest, outcomesTest, modellingParams, verbose), |
|
242 |
+ measurementsTrainLess1 <- measurementsTrain[, -selectedIndex, drop = FALSE] |
|
243 |
+ measurementsTestLess1 <- measurementsTest[, -selectedIndex, drop = FALSE] |
|
244 |
+ modelWithoutOne <- tryCatch(.doTrain(measurementsTrainLess1, outcomesTrain, measurementsTestLess1, outcomesTest, modellingParams, verbose), |
|
251 | 245 |
error = function(error) error[["message"]]) |
252 | 246 |
if(!is.null(modellingParams@predictParams)) |
253 |
- predictedOutcomesWithoutOne <- tryCatch(.doTest(modelWithoutOne[["model"]], measurementsTest, modellingParams@predictParams, verbose), |
|
247 |
+ predictedOutcomesWithoutOne <- tryCatch(.doTest(modelWithoutOne[["model"]], measurementsTestLess1, modellingParams@predictParams, verbose), |
|
254 | 248 |
error = function(error) error[["message"]]) |
255 | 249 |
else predictedOutcomesWithoutOne <- modelWithoutOne[["model"]] |
256 | 250 |
|
... | ... |
@@ -113,7 +113,7 @@ input data. Autmomatically reducing to smaller number.") |
113 | 113 |
{ |
114 | 114 |
if(verbose >= 1 && setNumber %% 10 == 0) |
115 | 115 |
message("Processing sample set ", setNumber, '.') |
116 |
- |
|
116 |
+ |
|
117 | 117 |
# crossValParams is needed at least for nested feature tuning. |
118 | 118 |
runTest(measurements[trainingSamples, , drop = FALSE], outcomes[trainingSamples], |
119 | 119 |
measurements[testSamples, , drop = FALSE], outcomes[testSamples], |
120 | 120 |
similarity index 64% |
121 | 121 |
rename from R/rankingSelectMulti.R |
122 | 122 |
rename to R/selectMulti.R |
... | ... |
@@ -5,17 +5,15 @@ setGeneric("selectMulti", function(measurementsTrain, classesTrain, params, ...) |
5 | 5 |
setMethod("selectMulti", "DataFrame", |
6 | 6 |
function(measurementsTrain, classesTrain, params, verbose = 0) |
7 | 7 |
{ |
8 |
- |
|
9 |
- assayTrain <- sapply(unique(mcols(measurementsTrain)[["dataset"]]), function(x) measurementsTrain[,mcols(measurementsTrain)[["dataset"]]%in%x], simplify = FALSE) |
|
10 |
- |
|
11 |
- selectedFeatures <- mapply(.doSelection, |
|
8 |
+ assayTrain <- sapply(unique(mcols(measurementsTrain)[["Renamed Dataset"]]), function(x) measurementsTrain[, mcols(measurementsTrain)[["Renamed Dataset"]] %in% x], simplify = FALSE) |
|
9 |
+ |
|
10 |
+ featuresIndices <- mapply(.doSelection, |
|
12 | 11 |
measurements = assayTrain, |
13 |
- modellingParams = params[names(assayTrain)], |
|
12 |
+ modellingParams = params, |
|
14 | 13 |
MoreArgs = list(outcomesTrain = classesTrain, |
15 | 14 |
crossValParams = CrossValParams(permutations = 1, folds = 5), ###### Where to get this from? |
16 |
- verbose = 0) |
|
17 |
- ) |
|
15 |
+ verbose = 0), SIMPLIFY = FALSE |
|
16 |
+ ) |
|
18 | 17 |
|
19 |
- do.call("rbind", selectedFeatures[2,]) |
|
20 |
- #S4Vectors::DataFrame(dataset = rep(names(selectedFeatures[2,]), unlist(lapply(selectedFeatures[2,], length))), feature = unlist(selectedFeatures[2,])) |
|
18 |
+ unique(unlist(lapply(featuresIndices, "[[", 2))) |
|
21 | 19 |
}) |
... | ... |
@@ -354,25 +354,25 @@ |
354 | 354 |
|
355 | 355 |
list(ranked = rankingUse, selected = selectionIndices, tune = tuneDetails) |
356 | 356 |
} else if(is.list(featureRanking)) { # It is a list of functions for ensemble selection. |
357 |
- featuresLists <- mapply(function(selector, selParams) |
|
357 |
+ featuresIndiciesLists <- mapply(function(selector, selParams) |
|
358 | 358 |
{ |
359 | 359 |
paramList <- list(measurementsTrain, outcomesTrain, trainParams = trainParams, |
360 | 360 |
predictParams = predictParams, verbose = verbose) |
361 | 361 |
paramList <- append(paramList, selParams) |
362 | 362 |
do.call(selector, paramList) |
363 |
- }, modellingParams@selectParams@featureRanking, modellingParams@selectParams@featureRanking, SIMPLIFY = FALSE) |
|
363 |
+ }, modellingParams@selectParams@featureRanking, modellingParams@selectParams@otherParams, SIMPLIFY = FALSE) |
|
364 | 364 |
|
365 | 365 |
performances <- sapply(topNfeatures, function(topN) |
366 | 366 |
{ |
367 |
- topIndices <- unlist(lapply(featuresLists, function(features) features[1:topN])) |
|
367 |
+ topIndices <- unlist(lapply(featuresIndiciesLists, function(featuresIndicies) featuresIndicies[1:topN])) |
|
368 | 368 |
topIndicesCounts <- table(topIndices) |
369 | 369 |
keep <- names(topIndicesCounts)[topIndicesCounts >= modellingParams@selectParams@minPresence] |
370 |
- measurementsSelected <- measurementsTrain[, keep, drop = FALSE] # Features in columns |
|
370 |
+ measurementsTrain <- measurementsTrain[, as.numeric(keep), drop = FALSE] # Features in columns |
|
371 | 371 |
|
372 | 372 |
if(crossValParams@tuneMode == "Resubstitution") |
373 | 373 |
{ |
374 |
- result <- runTest(measurementsSelected, classesTrain, |
|
375 |
- training = 1:nrow(measurementsSelected), testing = 1:nrow(measurementsSelected), |
|
374 |
+ result <- runTest(measurementsTrain, outcomesTrain, |
|
375 |
+ measurementsTrain, outcomesTrain, |
|
376 | 376 |
crossValParams = NULL, modellingParams, |
377 | 377 |
verbose = verbose, .iteration = "internal") |
378 | 378 |
predictions <- result[["predictions"]] |
... | ... |
@@ -389,13 +389,13 @@ |
389 | 389 |
}) |
390 | 390 |
bestOne <- ifelse(betterValues == "lower", which.min(performances)[1], which.max(performances)[1]) |
391 | 391 |
|
392 |
- selectedFeatures <- unlist(lapply(featuresLists, function(featuresList) featuresList[1:topNfeatures[bestOne]])) |
|
393 |
- names(table(selectedFeatures))[table(selectedFeatures) >= modellingParams@selectParams@minPresence] |
|
392 |
+ selectionIndices <- unlist(lapply(featuresLists, function(featuresList) featuresList[1:topNfeatures[bestOne]])) |
|
393 |
+ names(table(selectionIndices))[table(selectionIndices) >= modellingParams@selectParams@minPresence] |
|
394 | 394 |
|
395 |
- list(NULL, selectedFeatures, NULL) |
|
395 |
+ list(NULL, selectionIndices, NULL) |
|
396 | 396 |
} else { # Previous selection |
397 | 397 |
selectedFeatures <- |
398 |
- list(NULL, selectedFeatures, NULL) |
|
398 |
+ list(NULL, selectionIndices, NULL) |
|
399 | 399 |
} |
400 | 400 |
} |
401 | 401 |
|
... | ... |
@@ -45,9 +45,8 @@ and specifies that numeric variables from the sample information data table will |
45 | 45 |
used.} |
46 | 46 |
} |
47 | 47 |
\value{ |
48 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
49 |
-features, from the most promising features in the first position to the |
|
50 |
-least promising feature in the last position. |
|
48 |
+A vector of feature indices, from the most promising features in the |
|
49 |
+first position to the least promising feature in the last position. |
|
51 | 50 |
} |
52 | 51 |
\description{ |
53 | 52 |
Ranks features from largest Kolmogorov-Smirnov distance to smallest. |
... | ... |
@@ -45,9 +45,8 @@ and specifies that numeric variables from the sample information data table will |
45 | 45 |
used.} |
46 | 46 |
} |
47 | 47 |
\value{ |
48 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
49 |
-features, from the most promising features in the first position to the |
|
50 |
-least promising feature in the last position. |
|
48 |
+A vector of feature indices, from the most promising features in the |
|
49 |
+first position to the least promising feature in the last position. |
|
51 | 50 |
} |
52 | 51 |
\description{ |
53 | 52 |
Ranks features from largest Kullback-Leibler distance between classes to |
... | ... |
@@ -47,9 +47,8 @@ and specifies that numeric variables from the sample information table will be |
47 | 47 |
used.} |
48 | 48 |
} |
49 | 49 |
\value{ |
50 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
51 |
-features, from the most promising features in the first position to the |
|
52 |
-least promising feature in the last position. |
|
50 |
+A vector of feature indices, from the most promising features in |
|
51 |
+the first position to the least promising feature in the last position. |
|
53 | 52 |
} |
54 | 53 |
\description{ |
55 | 54 |
Ranks all features from largest Bartlett statistic to smallest. |
... | ... |
@@ -45,9 +45,8 @@ and specifies that numeric variables from the clinical data table will be |
45 | 45 |
used.} |
46 | 46 |
} |
47 | 47 |
\value{ |
48 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
49 |
-features, from the most promising features in the first position to the |
|
50 |
-least promising feature in the last position. |
|
48 |
+A vector of feature indicies, from the most promising features in the |
|
49 |
+first position to the least promising feature in the last position. |
|
51 | 50 |
} |
52 | 51 |
\description{ |
53 | 52 |
Ranks all features from largest coxph statistic to smallest. |
... | ... |
@@ -40,9 +40,8 @@ the value is 3.} |
40 | 40 |
used in the analysis.} |
41 | 41 |
} |
42 | 42 |
\value{ |
43 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
44 |
-features, from the most promising features in the first position to the |
|
45 |
-least promising feature in the last position. |
|
43 |
+A vector of feature indices, from the most promising features in the |
|
44 |
+first position to the least promising feature in the last position. |
|
46 | 45 |
} |
47 | 46 |
\description{ |
48 | 47 |
Uses an ordinary t-test if the data set has two classes or one-way ANOVA if |
... | ... |
@@ -55,9 +55,8 @@ the value is 3.} |
55 | 55 |
names of the data tables of counts to be used.} |
56 | 56 |
} |
57 | 57 |
\value{ |
58 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
59 |
-features, from the most promising features in the first position to the |
|
60 |
-least promising feature in the last position. |
|
58 |
+A vector of feature indices, from the most promising features in the |
|
59 |
+first position to the least promising feature in the last position. |
|
61 | 60 |
} |
62 | 61 |
\description{ |
63 | 62 |
Performs a differential expression analysis between classes and ranks the |
... | ... |
@@ -44,9 +44,8 @@ and specifies that numeric variables from the sample information table will be |
44 | 44 |
used.} |
45 | 45 |
} |
46 | 46 |
\value{ |
47 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
48 |
-features, from the most promising features in the first position to the |
|
49 |
-least promising feature in the last position. |
|
47 |
+A vector of feature indices, from the most promising features in the |
|
48 |
+first position to the least promising feature in the last position. |
|
50 | 49 |
} |
51 | 50 |
\description{ |
52 | 51 |
Ranks features by largest Levene statistic. |
... | ... |
@@ -57,9 +57,8 @@ and specifies that numeric variables from the sample information data table will |
57 | 57 |
used.} |
58 | 58 |
} |
59 | 59 |
\value{ |
60 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
61 |
-features, from the most promising features in the first position to the |
|
62 |
-least promising feature in the last position. |
|
60 |
+A vector of feature indices, from the most promising features in the |
|
61 |
+first position to the least promising feature in the last position. |
|
63 | 62 |
} |
64 | 63 |
\description{ |
65 | 64 |
Ranks features from largest difference of log likelihoods (null hypothesis - |
... | ... |
@@ -36,9 +36,8 @@ the value is 3.} |
36 | 36 |
used in the analysis.} |
37 | 37 |
} |
38 | 38 |
\value{ |
39 |
-A vector or data frame (if \code{MultiAssayExperiment} input) of |
|
40 |
-features, from the most promising features in the first position to the |
|
41 |
-least promising feature in the last position. |
|
39 |
+A vector of feature indicies, from the most promising features in |
|
40 |
+the first position to the least promising feature in the last position. |
|
42 | 41 |
} |
43 | 42 |
\description{ |
44 | 43 |
Uses a moderated F-test with empirical Bayes shrinkage to rank |
... | ... |
@@ -57,7 +57,7 @@ the value is 3.} |
57 | 57 |
name of the data table to be used.} |
58 | 58 |
} |
59 | 59 |
\value{ |
60 |
-A \code{\link{Pairs}} object, from the most promising feature pair |
|
60 |
+A vector of feature indices, from the most promising feature pair |
|
61 | 61 |
in the first position to the least promising feature pair in the last |
62 | 62 |
position. |
63 | 63 |
} |