... | ... |
@@ -3,8 +3,8 @@ Type: Package |
3 | 3 |
Title: A framework for cross-validated classification problems, with |
4 | 4 |
applications to differential variability and differential |
5 | 5 |
distribution testing |
6 |
-Version: 3.1.9 |
|
7 |
-Date: 2022-07-25 |
|
6 |
+Version: 3.1.10 |
|
7 |
+Date: 2022-08-02 |
|
8 | 8 |
Author: Dario Strbenac, Ellis Patrick, John Ormerod, Graham Mann, Jean Yang |
9 | 9 |
Maintainer: Dario Strbenac <dario.strbenac@sydney.edu.au> |
10 | 10 |
VignetteBuilder: knitr |
... | ... |
@@ -345,7 +345,7 @@ setMethod("crossValidate", "data.frame", # data.frame of numeric measurements. |
345 | 345 |
nCores = 1, |
346 | 346 |
characteristicsLabel = NULL) |
347 | 347 |
{ |
348 |
- measurements <- DataFrame(measurements) |
|
348 |
+ measurements <- S4Vectors::DataFrame(measurements) |
|
349 | 349 |
crossValidate(measurements = measurements, |
350 | 350 |
outcome = outcome, |
351 | 351 |
nFeatures = nFeatures, |
... | ... |
@@ -170,7 +170,7 @@ standardGeneric("elasticNetGLMpredictInterface")) |
170 | 170 |
setMethod("elasticNetGLMpredictInterface", c("multnet", "matrix"), |
171 | 171 |
function(model, measurementsTest, ...) |
172 | 172 |
{ |
173 |
- elasticNetGLMpredictInterface(model, DataFrame(measurementsTest, check.names = FALSE), ...) |
|
173 |
+ elasticNetGLMpredictInterface(model, S4Vectors::DataFrame(measurementsTest, check.names = FALSE), ...) |
|
174 | 174 |
}) |
175 | 175 |
|
176 | 176 |
# Sample information data, for example. |
... | ... |
@@ -64,9 +64,9 @@ setGeneric("fisherDiscriminant", function(measurementsTrain, ...) standardGeneri |
64 | 64 |
#' @export |
65 | 65 |
setMethod("fisherDiscriminant", "matrix", function(measurementsTrain, classesTrain, measurementsTest, ...) # Matrix of numeric measurements. |
66 | 66 |
{ |
67 |
- fisherDiscriminant(DataFrame(measurementsTrain[, , drop = FALSE], check.names = FALSE), |
|
67 |
+ fisherDiscriminant(S4Vectors::DataFrame(measurementsTrain[, , drop = FALSE], check.names = FALSE), |
|
68 | 68 |
classesTrain, |
69 |
- DataFrame(measurementsTest[, , drop = FALSE], check.names = FALSE), ...) |
|
69 |
+ S4Vectors::DataFrame(measurementsTest[, , drop = FALSE], check.names = FALSE), ...) |
|
70 | 70 |
}) |
71 | 71 |
|
72 | 72 |
#' @rdname fisherDiscriminant |
... | ... |
@@ -144,7 +144,7 @@ standardGeneric("GLMpredictInterface")) |
144 | 144 |
setMethod("GLMpredictInterface", c("glm", "matrix"), |
145 | 145 |
function(model, measurementsTest, ...) |
146 | 146 |
{ |
147 |
- GLMpredictInterface(model, DataFrame(measurementsTest, check.names = FALSE), ...) |
|
147 |
+ GLMpredictInterface(model, S4Vectors::DataFrame(measurementsTest, check.names = FALSE), ...) |
|
148 | 148 |
}) |
149 | 149 |
|
150 | 150 |
#' @rdname GLM |
... | ... |
@@ -92,7 +92,7 @@ setMethod("runTest", "DataFrame", # Sample information data or one of the other |
92 | 92 |
function(measurementsTrain, outcomeTrain, measurementsTest, outcomeTest, |
93 | 93 |
crossValParams = CrossValParams(), # crossValParams might be used for tuning optimisation. |
94 | 94 |
modellingParams = ModellingParams(), characteristics = S4Vectors::DataFrame(), verbose = 1, .iteration = NULL) |
95 |
-{if(!is.null(.iteration) && .iteration != "internal") |
|
95 |
+{ |
|
96 | 96 |
if(is.null(.iteration)) # Not being called by runTests but by user. So, check the user input. |
97 | 97 |
{ |
98 | 98 |
if(is.null(rownames(measurementsTrain))) |
... | ... |
@@ -258,7 +258,7 @@ input data. Autmomatically reducing to smaller number.") |
258 | 258 |
performanceChanges <- round(performancesWithoutEach - calcExternalPerformance(outcomeTest, predictedOutcome, performanceType), 2) |
259 | 259 |
|
260 | 260 |
if(is.null(S4Vectors::mcols(measurementsTrain))) selectedFeatures <- featuresInfo[selectedFeaturesIndices, "Original Feature"] else selectedFeatures <- featuresInfo[selectedFeaturesIndices, c("Original Assay", "Original Feature")] |
261 |
- importanceTable <- DataFrame(selectedFeatures, performanceChanges) |
|
261 |
+ importanceTable <- S4Vectors::DataFrame(selectedFeatures, performanceChanges) |
|
262 | 262 |
if(ncol(importanceTable) == 2) colnames(importanceTable)[1] <- "feature" |
263 | 263 |
colnames(importanceTable)[ncol(importanceTable)] <- paste("Change in", performanceType) |
264 | 264 |
} |
... | ... |
@@ -310,7 +310,7 @@ input data. Autmomatically reducing to smaller number.") |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
ClassifyResult(characteristics, allSamples, featuresInfo, list(rankedFeatures), list(selectedFeatures), |
313 |
- list(models), tuneDetails, DataFrame(sample = rownames(measurementsTest), predictedOutcome, check.names = FALSE), allOutcome, importanceTable) |
|
313 |
+ list(models), tuneDetails, S4Vectors::DataFrame(sample = rownames(measurementsTest), predictedOutcome, check.names = FALSE), allOutcome, importanceTable) |
|
314 | 314 |
} |
315 | 315 |
}) |
316 | 316 |
|
... | ... |
@@ -159,10 +159,10 @@ input data. Autmomatically reducing to smaller number.") |
159 | 159 |
predictsColumnName <- "risk" |
160 | 160 |
else # Classification task. A factor. |
161 | 161 |
predictsColumnName <- "class" |
162 |
- predictionsTable <- DataFrame(sample = unlist(lapply(results, "[[", "testSet")), splitsTestInfo, unlist(lapply(results, "[[", "predictions")), check.names = FALSE) |
|
162 |
+ predictionsTable <- S4Vectors::DataFrame(sample = unlist(lapply(results, "[[", "testSet")), splitsTestInfo, unlist(lapply(results, "[[", "predictions")), check.names = FALSE) |
|
163 | 163 |
colnames(predictionsTable)[ncol(predictionsTable)] <- predictsColumnName |
164 | 164 |
} else { # data frame |
165 |
- predictionsTable <- DataFrame(sample = unlist(lapply(results, "[[", "testSet")), splitsTestInfo, do.call(rbind, lapply(results, "[[", "predictions")), check.names = FALSE) |
|
165 |
+ predictionsTable <- S4Vectors::DataFrame(sample = unlist(lapply(results, "[[", "testSet")), splitsTestInfo, do.call(rbind, lapply(results, "[[", "predictions")), check.names = FALSE) |
|
166 | 166 |
} |
167 | 167 |
rownames(predictionsTable) <- NULL |
168 | 168 |
tuneList <- lapply(results, "[[", "tune") |
... | ... |
@@ -578,12 +578,12 @@ |
578 | 578 |
renamedInfo[rowsAssay, "feature"] <- paste("Feature", seq_along(rowsAssay), sep = '') |
579 | 579 |
renamedInfo[rowsAssay, "assay"] <- renamedAssays[match(assay, assays)] |
580 | 580 |
} |
581 |
- featuresInfo <- DataFrame(originalInfo, renamedInfo) |
|
581 |
+ featuresInfo <- S4Vectors::DataFrame(originalInfo, renamedInfo) |
|
582 | 582 |
colnames(featuresInfo) <- c("Original Assay", "Original Feature", "Renamed Assay", "Renamed Feature") |
583 | 583 |
} else { |
584 | 584 |
originalFeatures <- colnames(measurements) |
585 | 585 |
renamedInfo <- paste("Feature", seq_along(measurements), sep = '') |
586 |
- featuresInfo <- DataFrame(originalFeatures, renamedInfo) |
|
586 |
+ featuresInfo <- S4Vectors::DataFrame(originalFeatures, renamedInfo) |
|
587 | 587 |
colnames(featuresInfo) <- c("Original Feature", "Renamed Feature") |
588 | 588 |
} |
589 | 589 |
featuresInfo |