... | ... |
@@ -3,9 +3,9 @@ Type: Package |
3 | 3 |
Title: A framework for cross-validated classification problems, with |
4 | 4 |
applications to differential variability and differential |
5 | 5 |
distribution testing |
6 |
-Version: 3.3.2 |
|
7 |
-Date: 2022-11-09 |
|
8 |
-Authors@R: |
|
6 |
+Version: 3.3.3 |
|
7 |
+Date: 2022-11-17 |
|
8 |
+Authors@R: |
|
9 | 9 |
c( |
10 | 10 |
person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")), |
11 | 11 |
person(given = "Ellis", family = "Patrick", role = "aut"), |
... | ... |
@@ -6,9 +6,11 @@ randomForestTrainInterface <- function(measurementsTrain, outcomeTrain, mTryProp |
6 | 6 |
if(verbose == 3) |
7 | 7 |
message("Fitting random forest classifier to training data.") |
8 | 8 |
mtry <- round(mTryProportion * ncol(measurementsTrain)) # Number of features to try. |
9 |
- |
|
10 | 9 |
# Convert to base data.frame as randomForest doesn't understand DataFrame. |
11 |
- ranger::ranger(x = as(measurementsTrain, "data.frame"), y = outcomeTrain, mtry = mtry, importance = "impurity_corrected", ...) |
|
10 |
+ fittedModel <- ranger::ranger(x = as(measurementsTrain, "data.frame"), y = outcomeTrain, mtry = mtry, ...) |
|
11 |
+ forImportance <- ranger::ranger(x = as(measurementsTrain, "data.frame"), y = outcomeTrain, mtry = mtry, importance = "impurity_corrected", ...) |
|
12 |
+ attr(fittedModel, "forImportance") <- forImportance |
|
13 |
+ fittedModel |
|
12 | 14 |
} |
13 | 15 |
attr(randomForestTrainInterface, "name") <- "randomForestTrainInterface" |
14 | 16 |
|
... | ... |
@@ -37,7 +39,8 @@ randomForestPredictInterface <- function(forest, measurementsTest, ..., returnTy |
37 | 39 |
|
38 | 40 |
forestFeatures <- function(forest) |
39 | 41 |
{ |
40 |
- rankedFeaturesIndices <- order(ranger::importance(forest), decreasing = TRUE) |
|
41 |
- selectedFeaturesIndices <- which(ranger::importance(forest) > 0) |
|
42 |
+ forImportance <- attr(forest, "forImportance") |
|
43 |
+ rankedFeaturesIndices <- order(ranger::importance(forImportance), decreasing = TRUE) |
|
44 |
+ selectedFeaturesIndices <- which(ranger::importance(forImportance) > 0) |
|
42 | 45 |
list(rankedFeaturesIndices, selectedFeaturesIndices) |
43 | 46 |
} |
44 | 47 |
\ No newline at end of file |
... | ... |
@@ -44,6 +44,8 @@ |
44 | 44 |
#' @param legendSize The size of the boxes in the legends. |
45 | 45 |
#' @param plot Logical. IF \code{TRUE}, a plot is produced on the current |
46 | 46 |
#' graphics device. |
47 |
+#' @param ... Parameters not used by the \code{ClassifyResult} method that does |
|
48 |
+#' list-packaging but used by the main \code{list} method. |
|
47 | 49 |
#' @return A plot is produced and a grob is returned that can be saved to a |
48 | 50 |
#' graphics device. |
49 | 51 |
#' @author Dario Strbenac |
... | ... |
@@ -7,6 +7,7 @@ |
7 | 7 |
\alias{calcExternalPerformance,factor,factor-method} |
8 | 8 |
\alias{calcExternalPerformance,Surv,numeric-method} |
9 | 9 |
\alias{calcCVperformance,ClassifyResult-method} |
10 |
+\alias{calcExternalPerformance,factor,tabular-method} |
|
10 | 11 |
\title{Add Performance Calculations to a ClassifyResult Object or Calculate for a |
11 | 12 |
Pair of Factor Vectors} |
12 | 13 |
\usage{ |
... | ... |
@@ -24,6 +25,12 @@ Pair of Factor Vectors} |
24 | 25 |
performanceType = "C-index" |
25 | 26 |
) |
26 | 27 |
|
28 |
+\S4method{calcExternalPerformance}{factor,tabular}( |
|
29 |
+ actualOutcome, |
|
30 |
+ predictedOutcome, |
|
31 |
+ performanceType = "AUC" |
|
32 |
+) |
|
33 |
+ |
|
27 | 34 |
\S4method{calcCVperformance}{ClassifyResult}( |
28 | 35 |
result, |
29 | 36 |
performanceType = c("Balanced Accuracy", "Balanced Error", "Error", "Accuracy", |
... | ... |
@@ -58,6 +58,9 @@ |
58 | 58 |
\item{results}{A list of \code{\link{ClassifyResult}} objects. Could also be |
59 | 59 |
a matrix of pre-calculated metrics, for backwards compatibility.} |
60 | 60 |
|
61 |
+\item{...}{Parameters not used by the \code{ClassifyResult} method that does |
|
62 |
+list-packaging but used by the main \code{list} method.} |
|
63 |
+ |
|
61 | 64 |
\item{comparison}{Default: "auto". The aspect of the experimental |
62 | 65 |
design to compare. Can be any characteristic that all results share.} |
63 | 66 |
|