Browse code

preformatted replaced by code to avoid LaTeX errors.

Dario Strbenac authored on 27/02/2023 05:00:51
Showing 7 changed files

... ...
@@ -3,8 +3,8 @@ Type: Package
3 3
 Title: A framework for cross-validated classification problems, with
4 4
        applications to differential variability and differential
5 5
        distribution testing
6
-Version: 3.3.15
7
-Date: 2023-02-21
6
+Version: 3.3.16
7
+Date: 2023-02-26
8 8
 Authors@R:
9 9
     c(
10 10
     person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")),
... ...
@@ -477,7 +477,7 @@ setClassUnion("SelectParamsOrNULL", c("SelectParams", "NULL"))
477 477
 #' @docType class
478 478
 #' @section Constructor:
479 479
 #' \describe{
480
-#' \item{\preformatted{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr
480
+#' \item{\code{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr
481 481
 #'     \describe{
482 482
 #'         \item{\code{featureRanking}}{A character keyword referring to a registered feature ranking function. See \code{\link{available}} for valid keywords.}
483 483
 #'         \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the characteristics of feature selection to be done. First column must be named \code{"charateristic"} and second column must be named \code{"value"}. If using wrapper functions for feature selection in this package, the feature selection name will automatically be generated and therefore it is not necessary to specify it.}
... ...
@@ -582,7 +582,7 @@ setClass("TrainParams", representation(
582 582
 #' @docType class
583 583
 #' @section Constructor:
584 584
 #' \describe{
585
-#' \item{\preformatted{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(),
585
+#' \item{\code{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(),
586 586
 #' intermediate = character(0), tuneParams = NULL, getFeatures = NULL, ...)}}{
587 587
 #' Creates a \code{TrainParams} object which stores the function which will do the
588 588
 #' classifier building and parameters that the function will use.
... ...
@@ -854,7 +854,7 @@ setClassUnion("ModellingParamsOrNULL", c("ModellingParams", "NULL"))
854 854
 #' @docType class
855 855
 #' 
856 856
 #' @section Constructor:
857
-#' \preformatted{ClassifyResult(characteristics, originalNames, originalFeatures,
857
+#' \code{ClassifyResult(characteristics, originalNames, originalFeatures,
858 858
 #'               rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams = NULL, finalModel = NULL)}
859 859
 #' \describe{
860 860
 #' \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the
... ...
@@ -292,9 +292,10 @@ calcCostsAndPerformance <- function(precisionPathways, costs = NULL)
292 292
 #' @param object A set of pathways of class \code{PrecisionPathways}.
293 293
 #' @param weights A numeric vector of length two specifying how to weight the predictive accuracy
294 294
 #' and the cost during ranking. Must sum to 1.
295
+#' @param ... Not used but just following the S3 requirement of the generic template.
295 296
 #' @rdname precisionPathwaysEvaluations
296 297
 #' @export
297
-summary.PrecisionPathways <- function(object, weights = c(accuracy = 0.5, cost = 0.5))
298
+summary.PrecisionPathways <- function(object, weights = c(accuracy = 0.5, cost = 0.5), ...)
298 299
 {
299 300
   summaryTable <- data.frame(Pathway = rownames(object[["performance"]]),
300 301
                              `Balanced Accuracy` = object[["performance"]][, "accuracy"],
... ...
@@ -39,7 +39,7 @@ created by \code{\link{crossValidate}}, \code{\link{runTests}} or \code{\link{ru
39 39
 }
40 40
 \section{Constructor}{
41 41
 
42
-\preformatted{ClassifyResult(characteristics, originalNames, originalFeatures,
42
+\code{ClassifyResult(characteristics, originalNames, originalFeatures,
43 43
               rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams = NULL, finalModel = NULL)}
44 44
 \describe{
45 45
 \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the
... ...
@@ -16,7 +16,7 @@ feature selection. The empty constructor is provided for convenience.
16 16
 \section{Constructor}{
17 17
 
18 18
 \describe{
19
-\item{\preformatted{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr
19
+\item{\code{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr
20 20
     \describe{
21 21
         \item{\code{featureRanking}}{A character keyword referring to a registered feature ranking function. See \code{\link{available}} for valid keywords.}
22 22
         \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the characteristics of feature selection to be done. First column must be named \code{"charateristic"} and second column must be named \code{"value"}. If using wrapper functions for feature selection in this package, the feature selection name will automatically be generated and therefore it is not necessary to specify it.}
... ...
@@ -15,7 +15,7 @@ The empty constructor is provided for convenience.
15 15
 \section{Constructor}{
16 16
 
17 17
 \describe{
18
-\item{\preformatted{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(),
18
+\item{\code{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(),
19 19
 intermediate = character(0), tuneParams = NULL, getFeatures = NULL, ...)}}{
20 20
 Creates a \code{TrainParams} object which stores the function which will do the
21 21
 classifier building and parameters that the function will use.
... ...
@@ -10,7 +10,7 @@
10 10
 \usage{
11 11
 calcCostsAndPerformance(precisionPathways, costs = NULL)
12 12
 
13
-\method{summary}{PrecisionPathways}(object, weights = c(accuracy = 0.5, cost = 0.5))
13
+\method{summary}{PrecisionPathways}(object, weights = c(accuracy = 0.5, cost = 0.5), ...)
14 14
 
15 15
 \method{bubblePlot}{PrecisionPathways}(precisionPathways, pathwayColours = NULL)
16 16
 
... ...
@@ -36,6 +36,8 @@ calcCostsAndPerformance(precisionPathways, costs = NULL)
36 36
 \item{weights}{A numeric vector of length two specifying how to weight the predictive accuracy
37 37
 and the cost during ranking. Must sum to 1.}
38 38
 
39
+\item{...}{Not used but just following the S3 requirement of the generic template.}
40
+
39 41
 \item{pathwayColours}{A named vector of colours with names being the names of pathways. If none is specified,
40 42
 a default colour scheme will automatically be chosen.}
41 43