... | ... |
@@ -3,8 +3,8 @@ Type: Package |
3 | 3 |
Title: A framework for cross-validated classification problems, with |
4 | 4 |
applications to differential variability and differential |
5 | 5 |
distribution testing |
6 |
-Version: 3.3.15 |
|
7 |
-Date: 2023-02-21 |
|
6 |
+Version: 3.3.16 |
|
7 |
+Date: 2023-02-26 |
|
8 | 8 |
Authors@R: |
9 | 9 |
c( |
10 | 10 |
person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")), |
... | ... |
@@ -477,7 +477,7 @@ setClassUnion("SelectParamsOrNULL", c("SelectParams", "NULL")) |
477 | 477 |
#' @docType class |
478 | 478 |
#' @section Constructor: |
479 | 479 |
#' \describe{ |
480 |
-#' \item{\preformatted{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr |
|
480 |
+#' \item{\code{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr |
|
481 | 481 |
#' \describe{ |
482 | 482 |
#' \item{\code{featureRanking}}{A character keyword referring to a registered feature ranking function. See \code{\link{available}} for valid keywords.} |
483 | 483 |
#' \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the characteristics of feature selection to be done. First column must be named \code{"charateristic"} and second column must be named \code{"value"}. If using wrapper functions for feature selection in this package, the feature selection name will automatically be generated and therefore it is not necessary to specify it.} |
... | ... |
@@ -582,7 +582,7 @@ setClass("TrainParams", representation( |
582 | 582 |
#' @docType class |
583 | 583 |
#' @section Constructor: |
584 | 584 |
#' \describe{ |
585 |
-#' \item{\preformatted{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(), |
|
585 |
+#' \item{\code{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(), |
|
586 | 586 |
#' intermediate = character(0), tuneParams = NULL, getFeatures = NULL, ...)}}{ |
587 | 587 |
#' Creates a \code{TrainParams} object which stores the function which will do the |
588 | 588 |
#' classifier building and parameters that the function will use. |
... | ... |
@@ -854,7 +854,7 @@ setClassUnion("ModellingParamsOrNULL", c("ModellingParams", "NULL")) |
854 | 854 |
#' @docType class |
855 | 855 |
#' |
856 | 856 |
#' @section Constructor: |
857 |
-#' \preformatted{ClassifyResult(characteristics, originalNames, originalFeatures, |
|
857 |
+#' \code{ClassifyResult(characteristics, originalNames, originalFeatures, |
|
858 | 858 |
#' rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams = NULL, finalModel = NULL)} |
859 | 859 |
#' \describe{ |
860 | 860 |
#' \item{\code{characteristics}}{A \code{\link{DataFrame}} describing the |
... | ... |
@@ -292,9 +292,10 @@ calcCostsAndPerformance <- function(precisionPathways, costs = NULL) |
292 | 292 |
#' @param object A set of pathways of class \code{PrecisionPathways}. |
293 | 293 |
#' @param weights A numeric vector of length two specifying how to weight the predictive accuracy |
294 | 294 |
#' and the cost during ranking. Must sum to 1. |
295 |
+#' @param ... Not used but just following the S3 requirement of the generic template. |
|
295 | 296 |
#' @rdname precisionPathwaysEvaluations |
296 | 297 |
#' @export |
297 |
-summary.PrecisionPathways <- function(object, weights = c(accuracy = 0.5, cost = 0.5)) |
|
298 |
+summary.PrecisionPathways <- function(object, weights = c(accuracy = 0.5, cost = 0.5), ...) |
|
298 | 299 |
{ |
299 | 300 |
summaryTable <- data.frame(Pathway = rownames(object[["performance"]]), |
300 | 301 |
`Balanced Accuracy` = object[["performance"]][, "accuracy"], |
... | ... |
@@ -39,7 +39,7 @@ created by \code{\link{crossValidate}}, \code{\link{runTests}} or \code{\link{ru |
39 | 39 |
} |
40 | 40 |
\section{Constructor}{ |
41 | 41 |
|
42 |
-\preformatted{ClassifyResult(characteristics, originalNames, originalFeatures, |
|
42 |
+\code{ClassifyResult(characteristics, originalNames, originalFeatures, |
|
43 | 43 |
rankedFeatures, chosenFeatures, models, tunedParameters, predictions, actualOutcome, importance = NULL, modellingParams = NULL, finalModel = NULL)} |
44 | 44 |
\describe{ |
45 | 45 |
\item{\code{characteristics}}{A \code{\link{DataFrame}} describing the |
... | ... |
@@ -16,7 +16,7 @@ feature selection. The empty constructor is provided for convenience. |
16 | 16 |
\section{Constructor}{ |
17 | 17 |
|
18 | 18 |
\describe{ |
19 |
-\item{\preformatted{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr |
|
19 |
+\item{\code{SelectParams(featureRanking, characteristics = DataFrame(), minPresence = 1, intermediate = character(0),subsetToSelections = TRUE, tuneParams = list(nFeatures = seq(10, 100, 10), performanceType = "Balanced Accuracy"), ...)}}{Creates a \code{SelectParams} object which stores the function(s) which will do the selection and parameters that the function will use.\cr |
|
20 | 20 |
\describe{ |
21 | 21 |
\item{\code{featureRanking}}{A character keyword referring to a registered feature ranking function. See \code{\link{available}} for valid keywords.} |
22 | 22 |
\item{\code{characteristics}}{A \code{\link{DataFrame}} describing the characteristics of feature selection to be done. First column must be named \code{"charateristic"} and second column must be named \code{"value"}. If using wrapper functions for feature selection in this package, the feature selection name will automatically be generated and therefore it is not necessary to specify it.} |
... | ... |
@@ -15,7 +15,7 @@ The empty constructor is provided for convenience. |
15 | 15 |
\section{Constructor}{ |
16 | 16 |
|
17 | 17 |
\describe{ |
18 |
-\item{\preformatted{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(), |
|
18 |
+\item{\code{TrainParams(classifier, balancing = c("downsample", "upsample", "none"), characteristics = DataFrame(), |
|
19 | 19 |
intermediate = character(0), tuneParams = NULL, getFeatures = NULL, ...)}}{ |
20 | 20 |
Creates a \code{TrainParams} object which stores the function which will do the |
21 | 21 |
classifier building and parameters that the function will use. |
... | ... |
@@ -10,7 +10,7 @@ |
10 | 10 |
\usage{ |
11 | 11 |
calcCostsAndPerformance(precisionPathways, costs = NULL) |
12 | 12 |
|
13 |
-\method{summary}{PrecisionPathways}(object, weights = c(accuracy = 0.5, cost = 0.5)) |
|
13 |
+\method{summary}{PrecisionPathways}(object, weights = c(accuracy = 0.5, cost = 0.5), ...) |
|
14 | 14 |
|
15 | 15 |
\method{bubblePlot}{PrecisionPathways}(precisionPathways, pathwayColours = NULL) |
16 | 16 |
|
... | ... |
@@ -36,6 +36,8 @@ calcCostsAndPerformance(precisionPathways, costs = NULL) |
36 | 36 |
\item{weights}{A numeric vector of length two specifying how to weight the predictive accuracy |
37 | 37 |
and the cost during ranking. Must sum to 1.} |
38 | 38 |
|
39 |
+\item{...}{Not used but just following the S3 requirement of the generic template.} |
|
40 |
+ |
|
39 | 41 |
\item{pathwayColours}{A named vector of colours with names being the names of pathways. If none is specified, |
40 | 42 |
a default colour scheme will automatically be chosen.} |
41 | 43 |
|