Browse code

- Fixed a couple of variables mistakes in prepareData's list method.

Dario Strbenac authored on 20/02/2023 22:55:28
Showing 2 changed files

... ...
@@ -3,8 +3,8 @@ Type: Package
3 3
 Title: A framework for cross-validated classification problems, with
4 4
        applications to differential variability and differential
5 5
        distribution testing
6
-Version: 3.3.14
7
-Date: 2023-02-20
6
+Version: 3.3.15
7
+Date: 2023-02-21
8 8
 Authors@R:
9 9
     c(
10 10
     person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")),
... ...
@@ -235,15 +235,15 @@ setMethod("prepareData", "list",
235 235
   if("clinical" %in% names(measurements))
236 236
     measurements[["clinical"]] <- measurements[["clinical"]][, clinicalPredictors]
237 237
              
238
-  allMetadata <- mapply(function(measurementsOne, assayID) {
238
+  allMetadata <- do.call(rbind, mapply(function(measurementsOne, assayID) {
239 239
                         data.frame(assay = assayID, feature = colnames(measurementsOne))
240
-                        }, measurements, names(measurements))
240
+                        }, measurements, names(measurements), SIMPLIFY = FALSE))
241 241
   allMeasurements <- do.call("cbind", measurements)
242 242
   # Different assays e.g. mRNA, protein could have same feature name e.g. BRAF.
243 243
   colnames(allMeasurements) <- paste(allMetadata[, "assay"], allMetadata[, "feature"], sep = '_')
244
-  allDataFrame <- DataFrame(allMeasurements)
244
+  allMeasurements <- DataFrame(allMeasurements)
245 245
   S4Vectors::mcols(allMeasurements) <- allMetadata
246 246
     
247 247
   # Do other filtering and preparation in DataFrame function.
248
-  prepareData(dataTable, outcome, clinicalPredictors = NULL, ...)
248
+  prepareData(allMeasurements, outcome, clinicalPredictors = NULL, ...)
249 249
 })
250 250
\ No newline at end of file