... | ... |
@@ -3,8 +3,8 @@ Type: Package |
3 | 3 |
Title: A framework for cross-validated classification problems, with |
4 | 4 |
applications to differential variability and differential |
5 | 5 |
distribution testing |
6 |
-Version: 3.3.14 |
|
7 |
-Date: 2023-02-20 |
|
6 |
+Version: 3.3.15 |
|
7 |
+Date: 2023-02-21 |
|
8 | 8 |
Authors@R: |
9 | 9 |
c( |
10 | 10 |
person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")), |
... | ... |
@@ -235,15 +235,15 @@ setMethod("prepareData", "list", |
235 | 235 |
if("clinical" %in% names(measurements)) |
236 | 236 |
measurements[["clinical"]] <- measurements[["clinical"]][, clinicalPredictors] |
237 | 237 |
|
238 |
- allMetadata <- mapply(function(measurementsOne, assayID) { |
|
238 |
+ allMetadata <- do.call(rbind, mapply(function(measurementsOne, assayID) { |
|
239 | 239 |
data.frame(assay = assayID, feature = colnames(measurementsOne)) |
240 |
- }, measurements, names(measurements)) |
|
240 |
+ }, measurements, names(measurements), SIMPLIFY = FALSE)) |
|
241 | 241 |
allMeasurements <- do.call("cbind", measurements) |
242 | 242 |
# Different assays e.g. mRNA, protein could have same feature name e.g. BRAF. |
243 | 243 |
colnames(allMeasurements) <- paste(allMetadata[, "assay"], allMetadata[, "feature"], sep = '_') |
244 |
- allDataFrame <- DataFrame(allMeasurements) |
|
244 |
+ allMeasurements <- DataFrame(allMeasurements) |
|
245 | 245 |
S4Vectors::mcols(allMeasurements) <- allMetadata |
246 | 246 |
|
247 | 247 |
# Do other filtering and preparation in DataFrame function. |
248 |
- prepareData(dataTable, outcome, clinicalPredictors = NULL, ...) |
|
248 |
+ prepareData(allMeasurements, outcome, clinicalPredictors = NULL, ...) |
|
249 | 249 |
}) |
250 | 250 |
\ No newline at end of file |