Browse code

- All mcols prefixed with S4Vectors for Windows.

Dario Strbenac authored on 24/08/2022 11:06:23
Showing 6 changed files

... ...
@@ -86,6 +86,7 @@ import(grid)
86 86
 import(utils)
87 87
 importFrom(S4Vectors,as.data.frame)
88 88
 importFrom(S4Vectors,do.call)
89
+importFrom(S4Vectors,mcols)
89 90
 importFrom(dplyr,mutate)
90 91
 importFrom(dplyr,n)
91 92
 importFrom(rlang,sym)
... ...
@@ -6,7 +6,7 @@ pcaTrainInterface <- function(measurements, classes, params, nFeatures, ...)
6 6
               ###
7 7
               # Splitting measurements into a list of each of the datasets
8 8
               ###
9
-              assayTrain <- sapply(unique(mcols(measurements)[["assay"]]), function(assay) measurements[, mcols(measurements)[["assay"]] %in% assay], simplify = FALSE)
9
+              assayTrain <- sapply(unique(S4Vectors::mcols(measurements)[["assay"]]), function(assay) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assay], simplify = FALSE)
10 10
               
11 11
               if(!"clinical" %in% names(assayTrain)) stop("Must have an assay called \"clinical\".")
12 12
               
... ...
@@ -45,7 +45,7 @@ prevalTrainInterface <- function(measurements, classes, params, ...)
45 45
               ###
46 46
               # Splitting measurements into a list of each of the assays
47 47
               ###
48
-              assayTrain <- sapply(unique(mcols(measurements)[["assay"]]), function(assay) measurements[, mcols(measurements)[["assay"]] %in% assay], simplify = FALSE)
48
+              assayTrain <- sapply(unique(S4Vectors::mcols(measurements)[["assay"]]), function(assay) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assay], simplify = FALSE)
49 49
               
50 50
               if(!"clinical" %in% names(assayTrain)) stop("Must have an assay called \"clinical\"")
51 51
               
... ...
@@ -68,7 +68,7 @@
68 68
 #'             measurements[testIndices, ], classes[testIndices], modellingParams = modellingParams)
69 69
 #'   #}
70 70
 #' 
71
-#' @importFrom S4Vectors do.call
71
+#' @importFrom S4Vectors do.call mcols
72 72
 #' @usage NULL
73 73
 #' @export
74 74
 setGeneric("runTest", function(measurementsTrain, ...)
... ...
@@ -112,7 +112,7 @@ function(measurementsTrain, outcomeTrain, measurementsTest, outcomeTest,
112 112
     }
113 113
   }
114 114
   
115
-  if("feature" %in% colnames(mcols(measurementsTrain))) originalFeatures <- mcols(measurementsTrain)[, na.omit(match(c("assay", "feature"), colnames(mcols(measurementsTrain))))]    
115
+  if("feature" %in% colnames(S4Vectors::mcols(measurementsTrain))) originalFeatures <- S4Vectors::mcols(measurementsTrain)[, na.omit(match(c("assay", "feature"), colnames(S4Vectors::mcols(measurementsTrain))))]    
116 116
   else originalFeatures <- colnames(measurementsTrain)
117 117
     
118 118
   if(!is.null(modellingParams@selectParams) && max(modellingParams@selectParams@tuneParams[["nFeatures"]]) > ncol(measurementsTrain))
... ...
@@ -82,7 +82,7 @@ setMethod("runTests", "DataFrame", function(measurements, outcome, crossValParam
82 82
     stop("Some data elements are missing and classifiers don't work with missing data. Consider imputation or filtering.")            
83 83
 
84 84
   originalFeatures <- colnames(measurements)
85
-  if("feature" %in% colnames(mcols(measurements))) originalFeatures <- mcols(measurements)[, c("assay", "feature")]                 
85
+  if("feature" %in% colnames(S4Vectors::mcols(measurements))) originalFeatures <- S4Vectors::mcols(measurements)[, c("assay", "feature")]                 
86 86
   splitDataset <- prepareData(measurements, outcome)
87 87
   measurements <- splitDataset[["measurements"]]
88 88
   outcome <- splitDataset[["outcome"]]
... ...
@@ -107,7 +107,7 @@ input data. Autmomatically reducing to smaller number.")
107 107
   characteristics <- characteristics
108 108
   verbose <- verbose
109 109
   # Make them all local variables, so they are passed to workers.
110
-  
110
+
111 111
   results <- bpmapply(function(trainingSamples, testSamples, setNumber)
112 112
   #results <- mapply(function(trainingSamples, testSamples, setNumber)
113 113
   {
... ...
@@ -1,6 +1,6 @@
1 1
 selectMulti <- function(measurementsTrain, classesTrain, params, verbose = 0)
2 2
           {
3
-              assayTrain <- sapply(unique(mcols(measurementsTrain)[["assay"]]), function(assay) measurementsTrain[, mcols(measurementsTrain)[["assay"]] %in% assay], simplify = FALSE)
3
+              assayTrain <- sapply(unique(S4Vectors::mcols(measurementsTrain)[["assay"]]), function(assay) measurementsTrain[, S4Vectors::mcols(measurementsTrain)[["assay"]] %in% assay], simplify = FALSE)
4 4
               featuresIndices <- mapply(.doSelection, 
5 5
                                          measurements = assayTrain,
6 6
                                          modellingParams = params,