... | ... |
@@ -6,7 +6,7 @@ pcaTrainInterface <- function(measurements, classes, params, nFeatures, ...) |
6 | 6 |
### |
7 | 7 |
# Splitting measurements into a list of each of the datasets |
8 | 8 |
### |
9 |
- assayTrain <- sapply(unique(mcols(measurements)[["assay"]]), function(assay) measurements[, mcols(measurements)[["assay"]] %in% assay], simplify = FALSE) |
|
9 |
+ assayTrain <- sapply(unique(S4Vectors::mcols(measurements)[["assay"]]), function(assay) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assay], simplify = FALSE) |
|
10 | 10 |
|
11 | 11 |
if(!"clinical" %in% names(assayTrain)) stop("Must have an assay called \"clinical\".") |
12 | 12 |
|
... | ... |
@@ -45,7 +45,7 @@ prevalTrainInterface <- function(measurements, classes, params, ...) |
45 | 45 |
### |
46 | 46 |
# Splitting measurements into a list of each of the assays |
47 | 47 |
### |
48 |
- assayTrain <- sapply(unique(mcols(measurements)[["assay"]]), function(assay) measurements[, mcols(measurements)[["assay"]] %in% assay], simplify = FALSE) |
|
48 |
+ assayTrain <- sapply(unique(S4Vectors::mcols(measurements)[["assay"]]), function(assay) measurements[, S4Vectors::mcols(measurements)[["assay"]] %in% assay], simplify = FALSE) |
|
49 | 49 |
|
50 | 50 |
if(!"clinical" %in% names(assayTrain)) stop("Must have an assay called \"clinical\"") |
51 | 51 |
|
... | ... |
@@ -68,7 +68,7 @@ |
68 | 68 |
#' measurements[testIndices, ], classes[testIndices], modellingParams = modellingParams) |
69 | 69 |
#' #} |
70 | 70 |
#' |
71 |
-#' @importFrom S4Vectors do.call |
|
71 |
+#' @importFrom S4Vectors do.call mcols |
|
72 | 72 |
#' @usage NULL |
73 | 73 |
#' @export |
74 | 74 |
setGeneric("runTest", function(measurementsTrain, ...) |
... | ... |
@@ -112,7 +112,7 @@ function(measurementsTrain, outcomeTrain, measurementsTest, outcomeTest, |
112 | 112 |
} |
113 | 113 |
} |
114 | 114 |
|
115 |
- if("feature" %in% colnames(mcols(measurementsTrain))) originalFeatures <- mcols(measurementsTrain)[, na.omit(match(c("assay", "feature"), colnames(mcols(measurementsTrain))))] |
|
115 |
+ if("feature" %in% colnames(S4Vectors::mcols(measurementsTrain))) originalFeatures <- S4Vectors::mcols(measurementsTrain)[, na.omit(match(c("assay", "feature"), colnames(S4Vectors::mcols(measurementsTrain))))] |
|
116 | 116 |
else originalFeatures <- colnames(measurementsTrain) |
117 | 117 |
|
118 | 118 |
if(!is.null(modellingParams@selectParams) && max(modellingParams@selectParams@tuneParams[["nFeatures"]]) > ncol(measurementsTrain)) |
... | ... |
@@ -82,7 +82,7 @@ setMethod("runTests", "DataFrame", function(measurements, outcome, crossValParam |
82 | 82 |
stop("Some data elements are missing and classifiers don't work with missing data. Consider imputation or filtering.") |
83 | 83 |
|
84 | 84 |
originalFeatures <- colnames(measurements) |
85 |
- if("feature" %in% colnames(mcols(measurements))) originalFeatures <- mcols(measurements)[, c("assay", "feature")] |
|
85 |
+ if("feature" %in% colnames(S4Vectors::mcols(measurements))) originalFeatures <- S4Vectors::mcols(measurements)[, c("assay", "feature")] |
|
86 | 86 |
splitDataset <- prepareData(measurements, outcome) |
87 | 87 |
measurements <- splitDataset[["measurements"]] |
88 | 88 |
outcome <- splitDataset[["outcome"]] |
... | ... |
@@ -107,7 +107,7 @@ input data. Autmomatically reducing to smaller number.") |
107 | 107 |
characteristics <- characteristics |
108 | 108 |
verbose <- verbose |
109 | 109 |
# Make them all local variables, so they are passed to workers. |
110 |
- |
|
110 |
+ |
|
111 | 111 |
results <- bpmapply(function(trainingSamples, testSamples, setNumber) |
112 | 112 |
#results <- mapply(function(trainingSamples, testSamples, setNumber) |
113 | 113 |
{ |
... | ... |
@@ -1,6 +1,6 @@ |
1 | 1 |
selectMulti <- function(measurementsTrain, classesTrain, params, verbose = 0) |
2 | 2 |
{ |
3 |
- assayTrain <- sapply(unique(mcols(measurementsTrain)[["assay"]]), function(assay) measurementsTrain[, mcols(measurementsTrain)[["assay"]] %in% assay], simplify = FALSE) |
|
3 |
+ assayTrain <- sapply(unique(S4Vectors::mcols(measurementsTrain)[["assay"]]), function(assay) measurementsTrain[, S4Vectors::mcols(measurementsTrain)[["assay"]] %in% assay], simplify = FALSE) |
|
4 | 4 |
featuresIndices <- mapply(.doSelection, |
5 | 5 |
measurements = assayTrain, |
6 | 6 |
modellingParams = params, |