...
|
...
|
@@ -19,16 +19,18 @@ extremeGradientBoostingTrainInterface <- function(measurementsTrain, outcomeTrai
|
19
|
19
|
if(max(event) == 2) event <- event - 1
|
20
|
20
|
outcomeTrain <- time * ifelse(event == 1, 1, -1) # Negative for censoring.
|
21
|
21
|
objective <- "survival:cox"
|
|
22
|
+ trained <- xgboost::xgboost(measurementsTrain, outcomeTrain, objective = objective, nrounds = nrounds,
|
|
23
|
+ colsample_bynode = mTryProportion, verbose = 0, ...)
|
22
|
24
|
} else { # Classification task.
|
23
|
25
|
isClassification <- TRUE
|
24
|
26
|
classes <- levels(outcomeTrain)
|
25
|
27
|
numClasses <- length(classes)
|
26
|
28
|
objective <- "multi:softprob"
|
27
|
29
|
outcomeTrain <- as.numeric(outcomeTrain) - 1 # Classes are represented as 0, 1, 2, ...
|
28
|
|
- }
|
29
|
|
-
|
30
|
|
- trained <- xgboost::xgboost(measurementsTrain, outcomeTrain, objective = objective, nrounds = nrounds,
|
|
30
|
+ trained <- xgboost::xgboost(measurementsTrain, outcomeTrain, objective = objective, nrounds = nrounds,
|
31
|
31
|
num_class = numClasses, colsample_bynode = mTryProportion, verbose = 0, ...)
|
|
32
|
+ }
|
|
33
|
+
|
32
|
34
|
if(isClassification)
|
33
|
35
|
{
|
34
|
36
|
attr(trained, "classes") <- classes # Useful for factor predictions in predict method.
|