... | ... |
@@ -162,7 +162,7 @@ setMethod("crossValidate", "DataFrame", |
162 | 162 |
# Loop over classifiers |
163 | 163 |
set.seed(seed) |
164 | 164 |
CV( |
165 |
- measurements = measurements[, mcols(measurements)$dataset == dataIndex], |
|
165 |
+ measurements = measurements[, mcols(measurements)$dataset == dataIndex, drop = FALSE], |
|
166 | 166 |
classes = classes, |
167 | 167 |
nFeatures = nFeatures[dataIndex], |
168 | 168 |
selectionMethod = selectionIndex, |
... | ... |
@@ -440,11 +440,14 @@ |
440 | 440 |
tuneChosen <- NULL |
441 | 441 |
if(!is.null(modellingParams@trainParams@tuneParams) && is.null(modellingParams@selectParams@tuneParams)) |
442 | 442 |
{ |
443 |
+ performanceType <- modellingParams@trainParams@tuneParams[["performanceType"]] |
|
444 |
+ modellingParams@trainParams@tuneParams <- modellingParams@trainParams@tuneParams[-match("performanceType", names(modellingParams@trainParams@tuneParams))] |
|
443 | 445 |
tuneCombos <- expand.grid(modellingParams@trainParams@tuneParams, stringsAsFactors = FALSE) |
444 | 446 |
modellingParams@trainParams@tuneParams <- NULL |
445 | 447 |
|
446 | 448 |
performances <- sapply(1:nrow(tuneCombos), function(rowIndex) |
447 | 449 |
{ |
450 |
+ modellingParams@trainParams@otherParams <- c(modellingParams@trainParams@otherParams, as.list(tuneCombos[rowIndex, ])) |
|
448 | 451 |
if(crossValParams@tuneMode == "Resubstitution") |
449 | 452 |
{ |
450 | 453 |
result <- runTest(measurementsTrain, outcomesTrain, measurementsTest, outcomesTest, |
... | ... |
@@ -456,13 +459,13 @@ |
456 | 459 |
predictedOutcomes <- predictions[, "outcome"] |
457 | 460 |
else |
458 | 461 |
predictedOutcomes <- predictions |
459 |
- calcExternalPerformance(outcomesTest, predictedOutcomes, performanceName) |
|
462 |
+ calcExternalPerformance(outcomesTest, predictedOutcomes, performanceType) |
|
460 | 463 |
} else { |
461 | 464 |
result <- runTests(measurementsTrain, outcomesTrain, |
462 | 465 |
crossValParams, modellingParams, |
463 | 466 |
verbose = verbose, .iteration = "internal") |
464 |
- result <- calcCVperformance(result, performanceName) |
|
465 |
- median(predictions(result)["performanceType"]) |
|
467 |
+ result <- calcCVperformance(result, performanceType) |
|
468 |
+ median(performances(result)[[performanceType]]) |
|
466 | 469 |
} |
467 | 470 |
}) |
468 | 471 |
betterValues <- .ClassifyRenvir[["performanceInfoTable"]][.ClassifyRenvir[["performanceInfoTable"]][, "type"] == performanceType, "better"] |