... | ... |
@@ -3,8 +3,8 @@ Type: Package |
3 | 3 |
Title: A framework for cross-validated classification problems, with |
4 | 4 |
applications to differential variability and differential |
5 | 5 |
distribution testing |
6 |
-Version: 3.1.15 |
|
7 |
-Date: 2022-08-31 |
|
6 |
+Version: 3.1.16 |
|
7 |
+Date: 2022-09-12 |
|
8 | 8 |
Author: Dario Strbenac, Ellis Patrick, John Ormerod, Graham Mann, Jean Yang |
9 | 9 |
Maintainer: Dario Strbenac <dario.strbenac@sydney.edu.au> |
10 | 10 |
VignetteBuilder: knitr |
... | ... |
@@ -102,7 +102,7 @@ setMethod("crossValidate", "DataFrame", |
102 | 102 |
outcome <- measurementsAndOutcome[["outcome"]] |
103 | 103 |
|
104 | 104 |
# Which data-types or data-views are present? |
105 |
- assayIDs <- unique(mcols(measurements)[, "assay"]) |
|
105 |
+ assayIDs <- unique(mcols(measurements)$assay) |
|
106 | 106 |
if(is.null(assayIDs)) assayIDs <- 1 |
107 | 107 |
|
108 | 108 |
checkData(measurements, outcome) |
... | ... |
@@ -450,7 +450,7 @@ setMethod("crossValidate", "list", |
450 | 450 |
###################################### |
451 | 451 |
cleanNFeatures <- function(nFeatures, measurements){ |
452 | 452 |
#### Clean up |
453 |
- if(!is.null(mcols(measurements))) |
|
453 |
+ if(!is.null(mcols(measurements)$assay)) |
|
454 | 454 |
obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
455 | 455 |
else obsFeatures <- ncol(measurements) |
456 | 456 |
if(is.null(nFeatures) || length(nFeatures) == 1 && nFeatures == "all") nFeatures <- as.list(obsFeatures) |
... | ... |
@@ -467,7 +467,7 @@ cleanNFeatures <- function(nFeatures, measurements){ |
467 | 467 |
###################################### |
468 | 468 |
cleanSelectionMethod <- function(selectionMethod, measurements){ |
469 | 469 |
#### Clean up |
470 |
- if(!is.null(mcols(measurements))) |
|
470 |
+ if(!is.null(mcols(measurements)$assay)) |
|
471 | 471 |
obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
472 | 472 |
else return(list(selectionMethod)) |
473 | 473 |
|
... | ... |
@@ -483,7 +483,7 @@ cleanSelectionMethod <- function(selectionMethod, measurements){ |
483 | 483 |
###################################### |
484 | 484 |
cleanClassifier <- function(classifier, measurements){ |
485 | 485 |
#### Clean up |
486 |
- if(!is.null(mcols(measurements))) |
|
486 |
+ if(!is.null(mcols(measurements)$assay)) |
|
487 | 487 |
obsFeatures <- unlist(as.list(table(mcols(measurements)[, "assay"]))) |
488 | 488 |
else return(list(classifier)) |
489 | 489 |
|
... | ... |
@@ -55,9 +55,9 @@ setMethod("prepareData", "DataFrame", |
55 | 55 |
measurements <- measurements[, useFeatures] |
56 | 56 |
|
57 | 57 |
# Won't ever be true if input data was MultiAssayExperiment because wideFormat already produces valid names. |
58 |
- if(!all.equal(colnames(measurements), make.names(colnames(measurements)))) |
|
58 |
+ if(all.equal(colnames(measurements), make.names(colnames(measurements))) != TRUE) |
|
59 | 59 |
{ |
60 |
- mcols(measurements)[, "feature"] <- colnames(measurements) # Save the originals. |
|
60 |
+ mcols(measurements)$feature <- colnames(measurements) # Save the originals. |
|
61 | 61 |
colnames(measurements) <- make.names(colnames(measurements)) # Ensure column names are safe names. |
62 | 62 |
} |
63 | 63 |
|
... | ... |
@@ -272,7 +272,7 @@ input data. Autmomatically reducing to smaller number.") |
272 | 272 |
{ |
273 | 273 |
if(!is.null(rankedFeaturesIndices)) |
274 | 274 |
{ |
275 |
- if(is.null(S4Vectors::mcols(measurementsTrain))) |
|
275 |
+ if(is.null(S4Vectors::mcols(measurementsTrain)) || !"assay" %in% colnames(S4Vectors::mcols(measurementsTrain))) |
|
276 | 276 |
{ |
277 | 277 |
rankedFeatures <- originalFeatures[rankedFeaturesIndices] |
278 | 278 |
} else { |
... | ... |
@@ -282,7 +282,8 @@ input data. Autmomatically reducing to smaller number.") |
282 | 282 |
} else { rankedFeatures <- NULL} |
283 | 283 |
if(!is.null(selectedFeaturesIndices)) |
284 | 284 |
{ |
285 |
- if(is.null(S4Vectors::mcols(measurementsTrain))){ |
|
285 |
+ if(is.null(S4Vectors::mcols(measurementsTrain)) || !"assay" %in% colnames(S4Vectors::mcols(measurementsTrain))) |
|
286 |
+ { |
|
286 | 287 |
selectedFeatures <- originalFeatures[selectedFeaturesIndices] |
287 | 288 |
} else { |
288 | 289 |
featureColumns <- na.omit(match(c("assay", "feature"), colnames(S4Vectors::mcols(measurementsTrain)))) |
... | ... |
@@ -78,7 +78,8 @@ setMethod("runTests", "DataFrame", function(measurements, outcome, crossValParam |
78 | 78 |
stop("Some data elements are missing and classifiers don't work with missing data. Consider imputation or filtering.") |
79 | 79 |
|
80 | 80 |
originalFeatures <- colnames(measurements) |
81 |
- if("feature" %in% colnames(S4Vectors::mcols(measurements))) originalFeatures <- S4Vectors::mcols(measurements)[, c("assay", "feature")] |
|
81 |
+ if("assay" %in% colnames(S4Vectors::mcols(measurements))) |
|
82 |
+ originalFeatures <- S4Vectors::mcols(measurements)[, c("assay", "feature")] |
|
82 | 83 |
splitDataset <- prepareData(measurements, outcome, ...) |
83 | 84 |
measurements <- splitDataset[["measurements"]] |
84 | 85 |
outcome <- splitDataset[["outcome"]] |
... | ... |
@@ -17,7 +17,7 @@ |
17 | 17 |
#' design to compare. Can be any characteristic that all results share. |
18 | 18 |
#' @param metric Default: "Sample Error". The sample-wise metric to plot. |
19 | 19 |
#' @param featureValues If not NULL, can be a named factor or named numeric |
20 |
-#' vector specifying some variable of interest to plot underneath the above the |
|
20 |
+#' vector specifying some variable of interest to plot above the |
|
21 | 21 |
#' heatmap. |
22 | 22 |
#' @param featureName A label describing the information in |
23 | 23 |
#' \code{featureValues}. It must be specified if \code{featureValues} is. |
... | ... |
@@ -40,7 +40,9 @@ elasticNetGLMparams <- function() { |
40 | 40 |
|
41 | 41 |
# Support Vector Machine |
42 | 42 |
SVMparams = function() { |
43 |
- trainParams <- TrainParams(SVMtrainInterface, tuneParams = list(kernel = c("linear", "polynomial", "radial", "sigmoid"), cost = 10^(-3:3), performanceType = "Balanced Error")) |
|
43 |
+ trainParams <- TrainParams(SVMtrainInterface, |
|
44 |
+ tuneParams = list(kernel = c("linear", "polynomial", "radial", "sigmoid"), |
|
45 |
+ cost = 10^(-3:3), performanceType = "Balanced Error")) |
|
44 | 46 |
predictParams <- PredictParams(SVMpredictInterface) |
45 | 47 |
|
46 | 48 |
return(list(trainParams = trainParams, predictParams = predictParams)) |