Browse code

- Removed external documentation for internal utility functions.

Dario Strbenac authored on 17/11/2022 09:40:49
Showing 4 changed files

... ...
@@ -85,7 +85,6 @@ exportMethods(selectionPlot)
85 85
 exportMethods(show)
86 86
 exportMethods(totalPredictions)
87 87
 exportMethods(tunedParameters)
88
-import(BiocParallel)
89 88
 import(MultiAssayExperiment)
90 89
 import(grid)
91 90
 import(methods)
... ...
@@ -521,17 +521,6 @@ Using an ordinary GLM instead.")
521 521
     classifier
522 522
 }
523 523
 
524
-######################################
525
-######################################
526
-#' A function to generate a CrossValParams object
527
-#'
528
-#' @inheritParams crossValidate
529
-#'
530
-#' @return CrossValParams object
531
-#'
532
-#' @examples
533
-#' CVparams <- generateCrossValParams(nRepeats = 20, nFolds = 5, nCores = 8, selectionOptimisation = "none")
534
-#' @import BiocParallel
535 524
 generateCrossValParams <- function(nRepeats, nFolds, nCores, selectionOptimisation){
536 525
 
537 526
     seed <- .Random.seed[1]
... ...
@@ -554,31 +543,7 @@ generateCrossValParams <- function(nRepeats, nFolds, nCores, selectionOptimisati
554 543
     if(!any(tuneMode %in% c("Resubstitution", "Nested CV", "none"))) stop("selectionOptimisation must be Nested CV or Resubstitution or none")
555 544
     CrossValParams(permutations = nRepeats, folds = nFolds, parallelParams = BPparam, tuneMode = tuneMode)
556 545
 }
557
-######################################
558 546
 
559
-######################################
560
-#' A function to generate a ModellingParams object
561
-#'
562
-#' @inheritParams crossValidate
563
-#' @param assayIDs A vector of data set identifiers as long at the number of data sets.
564
-#'
565
-#' @return ModellingParams object
566
-#'
567
-#' @examples
568
-#' data(asthma)
569
-#' # First make a toy example assay with multiple data types. We'll randomly assign different features to be clinical, gene or protein.
570
-#' set.seed(51773)
571
-#' measurements <- DataFrame(measurements, check.names = FALSE) 
572
-#' mcols(measurements)$assay <- c(rep("clinical",20),sample(c("gene", "protein"), ncol(measurements)-20, replace = TRUE))
573
-#' mcols(measurements)$feature <- colnames(measurements)
574
-#' modellingParams <- generateModellingParams(assayIDs = c("clinical", "gene", "protein"),
575
-#'                                           measurements = measurements, 
576
-#'                                           nFeatures = list(clinical = 10, gene = 10, protein = 10),
577
-#'                                           selectionMethod = list(clinical = "t-test", gene = "t-test", protein = "t-test"),
578
-#'                                           selectionOptimisation = "none",
579
-#'                                           classifier = "randomForest",
580
-#'                                           multiViewMethod = "merge")
581
-#' @import BiocParallel
582 547
 generateModellingParams <- function(assayIDs,
583 548
                                     measurements,
584 549
                                     nFeatures,
585 550
deleted file mode 100644
... ...
@@ -1,26 +0,0 @@
1
-% Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/crossValidate.R
3
-\name{generateCrossValParams}
4
-\alias{generateCrossValParams}
5
-\title{A function to generate a CrossValParams object}
6
-\usage{
7
-generateCrossValParams(nRepeats, nFolds, nCores, selectionOptimisation)
8
-}
9
-\arguments{
10
-\item{nRepeats}{A numeric specifying the the number of repeats or permutations to use for cross-validation.}
11
-
12
-\item{nFolds}{A numeric specifying the number of folds to use for cross-validation.}
13
-
14
-\item{nCores}{A numeric specifying the number of cores used if the user wants to use parallelisation.}
15
-
16
-\item{selectionOptimisation}{A character of "Resubstitution", "Nested CV" or "none" specifying the approach used to optimise \code{nFeatures}.}
17
-}
18
-\value{
19
-CrossValParams object
20
-}
21
-\description{
22
-A function to generate a CrossValParams object
23
-}
24
-\examples{
25
-CVparams <- generateCrossValParams(nRepeats = 20, nFolds = 5, nCores = 8, selectionOptimisation = "none")
26
-}
27 0
deleted file mode 100644
... ...
@@ -1,63 +0,0 @@
1
-% Generated by roxygen2: do not edit by hand
2
-% Please edit documentation in R/crossValidate.R
3
-\name{generateModellingParams}
4
-\alias{generateModellingParams}
5
-\title{A function to generate a ModellingParams object}
6
-\usage{
7
-generateModellingParams(
8
-  assayIDs,
9
-  measurements,
10
-  nFeatures,
11
-  selectionMethod,
12
-  selectionOptimisation,
13
-  performanceType = "auto",
14
-  classifier,
15
-  multiViewMethod = "none"
16
-)
17
-}
18
-\arguments{
19
-\item{assayIDs}{A vector of data set identifiers as long at the number of data sets.}
20
-
21
-\item{measurements}{Either a \code{\link{DataFrame}}, \code{\link{data.frame}}, \code{\link{matrix}}, \code{\link{MultiAssayExperiment}} 
22
-or a list of these objects containing the data.}
23
-
24
-\item{nFeatures}{The number of features to be used for classification. If this is a single number, the same number of features will be used for all comparisons
25
-or assays. If a numeric vector these will be optimised over using \code{selectionOptimisation}. If a named vector with the same names of multiple assays, 
26
-a different number of features will be used for each assay. If a named list of vectors, the respective number of features will be optimised over. 
27
-Set to NULL or "all" if all features should be used.}
28
-
29
-\item{selectionMethod}{Default: "auto". A character vector of feature selection methods to compare. If a named character vector with names corresponding to different assays, 
30
-and performing multiview classification, the respective classification methods will be used on each assay. If \code{"auto"} t-test (two categories) / F-test (three or more categories) ranking
31
-and top \code{nFeatures} optimisation is done. Otherwise, the ranking method is per-feature Cox proportional hazards p-value.}
32
-
33
-\item{selectionOptimisation}{A character of "Resubstitution", "Nested CV" or "none" specifying the approach used to optimise \code{nFeatures}.}
34
-
35
-\item{performanceType}{Performance metric to optimise if classifier has any tuning parameters.}
36
-
37
-\item{classifier}{Default: \code{"auto"}. A character vector of classification methods to compare. If a named character vector with names corresponding to different assays, 
38
-and performing multiview classification, the respective classification methods will be used on each assay. If \code{"auto"}, then a random forest is used for a classification
39
-task or Cox proportional hazards model for a survival task.}
40
-
41
-\item{multiViewMethod}{A character vector specifying the multiview method or data integration approach to use.}
42
-}
43
-\value{
44
-ModellingParams object
45
-}
46
-\description{
47
-A function to generate a ModellingParams object
48
-}
49
-\examples{
50
-data(asthma)
51
-# First make a toy example assay with multiple data types. We'll randomly assign different features to be clinical, gene or protein.
52
-set.seed(51773)
53
-measurements <- DataFrame(measurements, check.names = FALSE) 
54
-mcols(measurements)$assay <- c(rep("clinical",20),sample(c("gene", "protein"), ncol(measurements)-20, replace = TRUE))
55
-mcols(measurements)$feature <- colnames(measurements)
56
-modellingParams <- generateModellingParams(assayIDs = c("clinical", "gene", "protein"),
57
-                                          measurements = measurements, 
58
-                                          nFeatures = list(clinical = 10, gene = 10, protein = 10),
59
-                                          selectionMethod = list(clinical = "t-test", gene = "t-test", protein = "t-test"),
60
-                                          selectionOptimisation = "none",
61
-                                          classifier = "randomForest",
62
-                                          multiViewMethod = "merge")
63
-}