Browse code

- Minor modifications to package imports to avoid notes and warnings.

Dario Strbenac authored on 12/12/2022 23:55:11
Showing 6 changed files

... ...
@@ -3,8 +3,8 @@ Type: Package
3 3
 Title: A framework for cross-validated classification problems, with
4 4
        applications to differential variability and differential
5 5
        distribution testing
6
-Version: 3.3.9
7
-Date: 2022-12-08
6
+Version: 3.4.0
7
+Date: 2022-12-12
8 8
 Authors@R:
9 9
     c(
10 10
     person(given = "Dario", family = "Strbenac", email = "dario.strbenac@sydney.edu.au", role = c("aut", "cre")),
... ...
@@ -20,18 +20,17 @@ VignetteBuilder: knitr
20 20
 Encoding: UTF-8
21 21
 biocViews: Classification, Survival
22 22
 Depends: R (>= 4.1.0), generics, methods, S4Vectors, MultiAssayExperiment, BiocParallel, survival
23
-Imports: grid, genefilter, utils, dplyr, plyr, tidyr, rlang, ranger, ggplot2 (>= 3.0.0), ggpubr, reshape2
23
+Imports: grid, genefilter, utils, dplyr, tidyr, rlang, ranger, ggplot2 (>= 3.0.0), ggpubr, reshape2
24 24
 Suggests: limma, edgeR, car, Rmixmod, gridExtra (>= 2.0.0), cowplot,
25 25
         BiocStyle, pamr, PoiClaClu, parathyroidSE, knitr, htmltools, gtable,
26 26
         scales, e1071, rmarkdown, IRanges, robustbase, glmnet, class, randomForestSRC,
27 27
         MatrixModels, xgboost
28
-Description: The software formalises a framework for classification in R.
29
-             There are four stages; Data transformation, feature selection, classifier training,
30
-             and prediction. The requirements of variable types and names are
28
+Description: The software formalises a framework for classification and survival model evaluatio
29
+             in R. There are four stages; Data transformation, feature selection, model training,
30
+             and prediction. The requirements of variable types and variable order are
31 31
              fixed, but specialised variables for functions can also be provided.
32
-             The classification framework is wrapped in a driver loop, that
33
-             reproducibly carries out a number of cross-validation schemes.
34
-             Functions for differential expression, differential variability,
32
+             The framework is wrapped in a driver loop that reproducibly carries out a
33
+             number of cross-validation schemes. Functions for differential mean, differential variability,
35 34
              and differential distribution are included. Additional functions
36 35
              may be developed by the user, by creating an interface to the framework.
37 36
 License: GPL-3
... ...
@@ -87,13 +87,12 @@ exportMethods(selectionPlot)
87 87
 exportMethods(show)
88 88
 exportMethods(totalPredictions)
89 89
 exportMethods(tunedParameters)
90
+import(BiocParallel)
90 91
 import(MultiAssayExperiment)
91
-import(dplyr)
92 92
 import(ggplot2)
93 93
 import(ggpubr)
94 94
 import(grid)
95 95
 import(methods)
96
-import(plyr)
97 96
 import(reshape2)
98 97
 import(utils)
99 98
 importFrom(S4Vectors,as.data.frame)
... ...
@@ -25,12 +25,8 @@
25 25
 #' feature selection, \code{"random"} if \code{doRandomFeatures} is \code{TRUE} for metrics of random selection and
26 26
 #' \code{"params"} for a list of parameters used during the execution of this function.
27 27
 #' @author Harry Robertson
28
-
29
-#' @import plyr
30
-#' @import dplyr
31 28
 #'
32 29
 #' @export
33
-#' 
34 30
 
35 31
 crissCrossValidate <- function(measurements, outcomes, 
36 32
                                nFeatures = 20, selectionMethod = "auto",
... ...
@@ -67,6 +67,7 @@ setMethod("runTests", c("matrix"), function(measurements, outcome, ...) # Matrix
67 67
 })
68 68
 
69 69
 #' @rdname runTests
70
+#' @import BiocParallel
70 71
 #' @export
71 72
 setMethod("runTests", "DataFrame", function(measurements, outcome, crossValParams = CrossValParams(), modellingParams = ModellingParams(),
72 73
            characteristics = S4Vectors::DataFrame(), ..., verbose = 1)
... ...
@@ -130,7 +130,7 @@
130 130
       if(tuneCombo != "none") # Add real parameters before function call.
131 131
         paramList <- append(paramList, tuneCombo)
132 132
       if(attr(featureRanking, "name") == "randomSelection")
133
-        paramList <- append(paramList, nFeatures = topNfeatures)
133
+        paramList <- append(paramList, list(nFeatures = topNfeatures))
134 134
       do.call(featureRanking, paramList)
135 135
     })
136 136
 
137 137
deleted file mode 100644
... ...
@@ -1,15 +0,0 @@
1
-url: https://sydneybiox.github.io/ClassifyR/
2
-template:
3
-  bootstrap: 5
4
-articles:
5
-- title: Menu
6
-  contents:
7
-    - introduction
8
-    - performanceEvaluation
9
-    - multiViewMethods
10
-    - incorporateNew
11
-    - ClassifyR
12
-    - DevelopersGuide
13
-navbar:
14
-  title: ~
15
-  bg: dark