0
|
87
|
new file mode 100644
|
...
|
...
|
@@ -0,0 +1,1289 @@
|
|
1
|
+<!DOCTYPE html>
|
|
2
|
+<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
|
|
3
|
+<head>
|
|
4
|
+<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
|
|
5
|
+<meta charset="utf-8">
|
|
6
|
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
7
|
+<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
|
8
|
+<meta name="description" content="ClassifyR">
|
|
9
|
+<title>An Introduction to **ClassifyR** • ClassifyR</title>
|
|
10
|
+<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
|
11
|
+<link href="../deps/bootstrap-5.1.3/bootstrap.min.css" rel="stylesheet">
|
|
12
|
+<script src="../deps/bootstrap-5.1.3/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
|
|
13
|
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
|
|
14
|
+<!-- bootstrap-toc --><script src="https://cdn.rawgit.com/afeld/bootstrap-toc/v1.0.1/dist/bootstrap-toc.min.js"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="An Introduction to **ClassifyR**">
|
|
15
|
+<meta property="og:description" content="ClassifyR">
|
|
16
|
+<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
|
|
17
|
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
|
|
18
|
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
|
|
19
|
+<![endif]-->
|
|
20
|
+</head>
|
|
21
|
+<body>
|
|
22
|
+ <a href="#main" class="visually-hidden-focusable">Skip to contents</a>
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+ <nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-dark"><div class="container">
|
|
26
|
+
|
|
27
|
+ <a class="navbar-brand me-2" href="../index.html">ClassifyR</a>
|
|
28
|
+
|
|
29
|
+ <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">3.3.2</small>
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+ <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
|
|
33
|
+ <span class="navbar-toggler-icon"></span>
|
|
34
|
+ </button>
|
|
35
|
+
|
|
36
|
+ <div id="navbar" class="collapse navbar-collapse ms-3">
|
|
37
|
+ <ul class="navbar-nav me-auto">
|
|
38
|
+<li class="active nav-item">
|
|
39
|
+ <a class="nav-link" href="../articles/ClassifyR.html">Get started</a>
|
|
40
|
+</li>
|
|
41
|
+<li class="nav-item">
|
|
42
|
+ <a class="nav-link" href="../reference/index.html">Reference</a>
|
|
43
|
+</li>
|
|
44
|
+<li class="nav-item">
|
|
45
|
+ <a class="nav-link" href="../articles/index.html">Articles</a>
|
|
46
|
+</li>
|
|
47
|
+ </ul>
|
|
48
|
+<form class="form-inline my-2 my-lg-0" role="search">
|
|
49
|
+ <input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
|
|
50
|
+</form>
|
|
51
|
+
|
|
52
|
+ <ul class="navbar-nav"></ul>
|
|
53
|
+</div>
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+ </div>
|
|
57
|
+</nav><div class="container template-article">
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+<div class="row">
|
|
63
|
+ <main id="main" class="col-md-9"><div class="page-header">
|
|
64
|
+ <img src="" class="logo" alt=""><h1>An Introduction to ClassifyR</h1>
|
|
65
|
+ <h4 data-toc-skip class="author">Dario Strbenac,
|
|
66
|
+Ellis Patrick, Graham Mann, Jean Yang, John Ormerod <br> The University
|
|
67
|
+of Sydney, Australia.</h4>
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+ <div class="d-none name"><code>ClassifyR.Rmd</code></div>
|
|
72
|
+ </div>
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+<div class="section level2">
|
|
77
|
+<h2 id="installation">Installation<a class="anchor" aria-label="anchor" href="#installation"></a>
|
|
78
|
+</h2>
|
|
79
|
+<p>Typically, each feature selection method or classifier originates
|
|
80
|
+from a different R package, which <strong>ClassifyR</strong> provides a
|
|
81
|
+wrapper around. By default, only high-performance t-test/F-test and
|
|
82
|
+random forest are installed. If you intend to compare between numerous
|
|
83
|
+different modelling methods, you should install all suggested packages
|
|
84
|
+at once by using the command
|
|
85
|
+<code>BiocManager::install("ClassifyR", dependencies = TRUE)</code>.
|
|
86
|
+This will take a few minutes, particularly on Linux, because each
|
|
87
|
+package will be compiled from source code.</p>
|
|
88
|
+</div>
|
|
89
|
+<div class="section level2">
|
|
90
|
+<h2 id="overview">Overview<a class="anchor" aria-label="anchor" href="#overview"></a>
|
|
91
|
+</h2>
|
|
92
|
+<p><strong>ClassifyR</strong> provides a structured pipeline for
|
|
93
|
+cross-validated classification. Classification is viewed in terms of
|
|
94
|
+four stages, data transformation, feature selection, classifier
|
|
95
|
+training, and prediction. The driver functions <em>crossValidate</em>
|
|
96
|
+and <em>runTests</em> implements varieties of cross-validation. They
|
|
97
|
+are:</p>
|
|
98
|
+<ul>
|
|
99
|
+<li>Permutation of the order of samples followed by k-fold
|
|
100
|
+cross-validation (runTests only)</li>
|
|
101
|
+<li>Repeated x% test set cross-validation</li>
|
|
102
|
+<li>leave-k-out cross-validation</li>
|
|
103
|
+</ul>
|
|
104
|
+<p>Driver functions can use parallel processing capabilities in R to
|
|
105
|
+speed up cross-validations when many CPUs are available. The output of
|
|
106
|
+the driver functions is a <em>ClassifyResult</em> object which can be
|
|
107
|
+directly used by the performance evaluation functions. The process of
|
|
108
|
+classification is summarised by a flowchart.</p>
|
|
109
|
+<img src="" style="margin-left: auto;margin-right: auto"><p>Importantly, ClassifyR implements a number of methods for
|
|
110
|
+classification using different kinds of changes in measurements between
|
|
111
|
+classes. Most classifiers work with features where the means are
|
|
112
|
+different. In addition to changes in means (DM),
|
|
113
|
+<strong>ClassifyR</strong> also allows for classification using
|
|
114
|
+differential variability (DV; changes in scale) and differential
|
|
115
|
+distribution (DD; changes in location and/or scale).</p>
|
|
116
|
+<div class="section level3">
|
|
117
|
+<h3 id="case-study-diagnosing-asthma">Case Study: Diagnosing Asthma<a class="anchor" aria-label="anchor" href="#case-study-diagnosing-asthma"></a>
|
|
118
|
+</h3>
|
|
119
|
+<p>To demonstrate some key features of ClassifyR, a data set consisting
|
|
120
|
+of the 2000 most variably expressed genes and 190 people will be used to
|
|
121
|
+quickly obtain results. The journal article corresponding to the data
|
|
122
|
+set was published in <em>Scientific Reports</em> in 2018 and is titled
|
|
123
|
+<a href="http://www.nature.com/articles/s41598-018-27189-4" class="external-link">A Nasal
|
|
124
|
+Brush-based Classifier of Asthma Identified by Machine Learning Analysis
|
|
125
|
+of Nasal RNA Sequence Data</a>.</p>
|
|
126
|
+<p>Load the package.</p>
|
|
127
|
+<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
|
|
128
|
+<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://sydneybiox.github.io/ClassifyR/">ClassifyR</a></span><span class="op">)</span></span></code></pre></div>
|
|
129
|
+<p>A glimpse at the RNA measurements and sample classes.</p>
|
|
130
|
+<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
|
|
131
|
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/data.html" class="external-link">data</a></span><span class="op">(</span><span class="va">asthma</span><span class="op">)</span> <span class="co"># Contains measurements and classes variables.</span></span>
|
|
132
|
+<span><span class="va">measurements</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">5</span>, <span class="fl">1</span><span class="op">:</span><span class="fl">5</span><span class="op">]</span></span></code></pre></div>
|
|
133
|
+<pre><code><span><span class="co">## HBB BPIFA1 XIST FCGR3B HBA2</span></span>
|
|
134
|
+<span><span class="co">## Sample 1 9.72 14.06 12.28 11.42 7.83</span></span>
|
|
135
|
+<span><span class="co">## Sample 2 11.98 13.89 6.35 13.25 9.42</span></span>
|
|
136
|
+<span><span class="co">## Sample 3 12.15 17.44 10.21 7.87 9.68</span></span>
|
|
137
|
+<span><span class="co">## Sample 4 10.60 11.87 6.27 14.75 8.96</span></span>
|
|
138
|
+<span><span class="co">## Sample 5 8.18 15.01 11.21 6.77 6.43</span></span></code></pre>
|
|
139
|
+<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
|
|
140
|
+<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/utils/head.html" class="external-link">head</a></span><span class="op">(</span><span class="va">classes</span><span class="op">)</span></span></code></pre></div>
|
|
141
|
+<pre><code><span><span class="co">## [1] No No No No Yes No </span></span>
|
|
142
|
+<span><span class="co">## Levels: No Yes</span></span></code></pre>
|
|
143
|
+<p>The numeric matrix variable <em>measurements</em> stores the
|
|
144
|
+normalised values of the RNA gene abundances for each sample and the
|
|
145
|
+factor vector <em>classes</em> identifies which class the samples belong
|
|
146
|
+to. The measurements were normalised using <strong>DESeq2</strong>’s
|
|
147
|
+<em>varianceStabilizingTransformation</em> function, which produces
|
|
148
|
+<span class="math inline">\(log_2\)</span>-like data.</p>
|
|
149
|
+<p>For more complex data sets with multiple kinds of experiments
|
|
150
|
+(e.g. DNA methylation, copy number, gene expression on the same set of
|
|
151
|
+samples) a <a href="https://bioconductor.org/packages/release/bioc/html/MultiAssayExperiment.html" class="external-link"><em>MultiAssayExperiment</em></a>
|
|
152
|
+is recommended for data storage and supported by
|
|
153
|
+<strong>ClassifyR</strong>’s methods.</p>
|
|
154
|
+</div>
|
|
155
|
+</div>
|
|
156
|
+<div class="section level2">
|
|
157
|
+<h2 id="quick-start-crossvalidate-function">Quick Start: <em>crossValidate</em> Function<a class="anchor" aria-label="anchor" href="#quick-start-crossvalidate-function"></a>
|
|
158
|
+</h2>
|
|
159
|
+<p>The <em>crossValidate</em> function offers a quick and simple way to
|
|
160
|
+start analysing a dataset in ClassifyR. It is a wrapper for
|
|
161
|
+<em>runTests</em>, the core model building and testing function of
|
|
162
|
+ClassifyR. <em>crossValidate</em> must be supplied with
|
|
163
|
+<em>measurements</em>, a simple tabular data container or a list-like
|
|
164
|
+structure of such related tabular data on common samples. The classes of
|
|
165
|
+it may be <em>matrix</em>, <em>data.frame</em>, <em>DataFrame</em>,
|
|
166
|
+<em>MultiAssayExperiment</em> or <em>list</em> of <em>data.frames</em>.
|
|
167
|
+For a dataset with <span class="math inline">\(n\)</span> observations
|
|
168
|
+and <span class="math inline">\(p\)</span> variables, the
|
|
169
|
+<em>crossValidate</em> function will accept inputs of the following
|
|
170
|
+shapes:</p>
|
|
171
|
+<table class="table">
|
|
172
|
+<colgroup>
|
|
173
|
+<col width="25%">
|
|
174
|
+<col width="37%">
|
|
175
|
+<col width="37%">
|
|
176
|
+</colgroup>
|
|
177
|
+<thead><tr class="header">
|
|
178
|
+<th>Data Type</th>
|
|
179
|
+<th align="center"><span class="math inline">\(n \times p\)</span></th>
|
|
180
|
+<th align="center"><span class="math inline">\(p \times n\)</span></th>
|
|
181
|
+</tr></thead>
|
|
182
|
+<tbody>
|
|
183
|
+<tr class="odd">
|
|
184
|
+<td><span style="font-family: 'Courier New', monospace;">matrix</span></td>
|
|
185
|
+<td align="center">✔</td>
|
|
186
|
+<td align="center"></td>
|
|
187
|
+</tr>
|
|
188
|
+<tr class="even">
|
|
189
|
+<td><span style="font-family: 'Courier New', monospace;">data.frame</span></td>
|
|
190
|
+<td align="center">✔</td>
|
|
191
|
+<td align="center"></td>
|
|
192
|
+</tr>
|
|
193
|
+<tr class="odd">
|
|
194
|
+<td><span style="font-family: 'Courier New', monospace;">DataFrame</span></td>
|
|
195
|
+<td align="center">✔</td>
|
|
196
|
+<td align="center"></td>
|
|
197
|
+</tr>
|
|
198
|
+<tr class="even">
|
|
199
|
+<td><span style="font-family: 'Courier New', monospace;">MultiAssayExperiment</span></td>
|
|
200
|
+<td align="center"></td>
|
|
201
|
+<td align="center">✔</td>
|
|
202
|
+</tr>
|
|
203
|
+<tr class="odd">
|
|
204
|
+<td>
|
|
205
|
+<span style="font-family: 'Courier New', monospace;">list</span> of
|
|
206
|
+<span style="font-family: 'Courier New', monospace;">data.frame</span>s</td>
|
|
207
|
+<td align="center">✔</td>
|
|
208
|
+<td align="center"></td>
|
|
209
|
+</tr>
|
|
210
|
+</tbody>
|
|
211
|
+</table>
|
|
212
|
+<p><em>crossValidate</em> must also be supplied with <em>outcome</em>,
|
|
213
|
+which represents the prediction to be made in a variety of possible
|
|
214
|
+ways.</p>
|
|
215
|
+<ul>
|
|
216
|
+<li>A <em>factor</em> that contains the class label for each
|
|
217
|
+observation. <em>classes</em> must be of length <span class="math inline">\(n\)</span>.</li>
|
|
218
|
+<li>A <em>character</em> of length 1 that matches a column name in a
|
|
219
|
+data frame which holds the classes. The classes will automatically be
|
|
220
|
+removed before training is done.</li>
|
|
221
|
+<li>A <em>Surv</em> object of the same length as the number of samples
|
|
222
|
+in the data which contains information about the time and censoring of
|
|
223
|
+the samples.</li>
|
|
224
|
+<li>A <em>character</em> vector of length 2 or 3 that each match a
|
|
225
|
+column name in a data frame which holds information about the time and
|
|
226
|
+censoring of the samples. The time-to-event columns will automatically
|
|
227
|
+be removed before training is done.</li>
|
|
228
|
+</ul>
|
|
229
|
+<p>The type of classifier used can be changed with the
|
|
230
|
+<em>classifier</em> argument. The default is a random forest, which
|
|
231
|
+seamlessly handles categorical and numerical data. A full list of
|
|
232
|
+classifiers can be seen by running <em>?crossValidate</em>. A feature
|
|
233
|
+selection step can be performed before classification using
|
|
234
|
+<em>nFeatures</em> and <em>selectionMethod</em>, which is a t-test by
|
|
235
|
+default. Similarly, the number of folds and number of repeats for cross
|
|
236
|
+validation can be changed with the <em>nFolds</em> and <em>nRepeats</em>
|
|
237
|
+arguments. If wanted, <em>nCores</em> can be specified to run the cross
|
|
238
|
+validation in parallel. To perform 5-fold cross-validation of a Support
|
|
239
|
+Vector Machine with 2 repeats:</p>
|
|
240
|
+<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
|
|
241
|
+<code class="sourceCode R"><span><span class="va">result</span> <span class="op"><-</span> <span class="fu"><a href="../reference/crossValidate.html">crossValidate</a></span><span class="op">(</span><span class="va">measurements</span>, <span class="va">classes</span>, classifier <span class="op">=</span> <span class="st">"SVM"</span>,</span>
|
|
242
|
+<span> nFeatures <span class="op">=</span> <span class="fl">20</span>, nFolds <span class="op">=</span> <span class="fl">5</span>, nRepeats <span class="op">=</span> <span class="fl">2</span>, nCores <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></code></pre></div>
|
|
243
|
+<pre><code><span><span class="co">## Processing sample set 10.</span></span></code></pre>
|
|
244
|
+<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
|
|
245
|
+<code class="sourceCode R"><span><span class="fu"><a href="../reference/performancePlot.html">performancePlot</a></span><span class="op">(</span><span class="va">result</span><span class="op">)</span></span></code></pre></div>
|
|
246
|
+<pre><code><span><span class="co">## Warning in .local(results, ...): Balanced Accuracy not found in all elements of results. Calculating it now.</span></span></code></pre>
|
|
247
|
+<p><img src="ClassifyR_files/figure-html/unnamed-chunk-5-1.png" width="700"></p>
|
|
248
|
+<div class="section level3">
|
|
249
|
+<h3 id="data-integration-with-crossvalidate">Data Integration with crossValidate<a class="anchor" aria-label="anchor" href="#data-integration-with-crossvalidate"></a>
|
|
250
|
+</h3>
|
|
251
|
+<p><em>crossValidate</em> also allows data from multiple sources to be
|
|
252
|
+integrated into a single model. The integration method can be specified
|
|
253
|
+with <em>multiViewMethod</em> argument. In this example, suppose the
|
|
254
|
+first 10 variables in the asthma data set are from a certain source and
|
|
255
|
+the remaining 1990 variables are from a second source. To integrate
|
|
256
|
+multiple data sets, each variable must be labeled with the data set it
|
|
257
|
+came from. This is done in a different manner depending on the data type
|
|
258
|
+of <em>measurements</em>.</p>
|
|
259
|
+<p>If using Bioconductor’s <em>DataFrame</em>, this can be specified
|
|
260
|
+using <em>mcols</em>. In the column metadata, each feature must have an
|
|
261
|
+<em>assay</em> and a <em>feature</em> name.</p>
|
|
262
|
+<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
|
|
263
|
+<code class="sourceCode R"><span><span class="va">measurementsDF</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/S4Vectors/man/DataFrame-class.html" class="external-link">DataFrame</a></span><span class="op">(</span><span class="va">measurements</span><span class="op">)</span></span>
|
|
264
|
+<span><span class="fu"><a href="https://rdrr.io/pkg/S4Vectors/man/Vector-class.html" class="external-link">mcols</a></span><span class="op">(</span><span class="va">measurementsDF</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
|
|
265
|
+<span> assay <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"assay_1"</span>, <span class="st">"assay_2"</span><span class="op">)</span>, times <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">10</span>, <span class="fl">1990</span><span class="op">)</span><span class="op">)</span>,</span>
|
|
266
|
+<span> feature <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/colnames.html" class="external-link">colnames</a></span><span class="op">(</span><span class="va">measurementsDF</span><span class="op">)</span></span>
|
|
267
|
+<span><span class="op">)</span></span>
|
|
268
|
+<span></span>
|
|
269
|
+<span><span class="va">result</span> <span class="op"><-</span> <span class="fu"><a href="../reference/crossValidate.html">crossValidate</a></span><span class="op">(</span><span class="va">measurementsDF</span>, <span class="va">classes</span>, classifier <span class="op">=</span> <span class="st">"SVM"</span>, nFolds <span class="op">=</span> <span class="fl">5</span>,</span>
|
|
270
|
+<span> nRepeats <span class="op">=</span> <span class="fl">3</span>, multiViewMethod <span class="op">=</span> <span class="st">"merge"</span><span class="op">)</span></span></code></pre></div>
|
|
271
|
+<pre><code><span><span class="co">## Processing sample set 10.</span></span>
|
|
272
|
+<span><span class="co">## Processing sample set 10.</span></span>
|
|
273
|
+<span><span class="co">## Processing sample set 10.</span></span></code></pre>
|
|
274
|
+<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
|
|
275
|
+<code class="sourceCode R"><span><span class="fu"><a href="../reference/performancePlot.html">performancePlot</a></span><span class="op">(</span><span class="va">result</span>, characteristicsList <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>x <span class="op">=</span> <span class="st">"Assay Name"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
|
|
276
|
+<pre><code><span><span class="co">## Warning in .local(results, ...): Balanced Accuracy not found in all elements of results. Calculating it now.</span></span></code></pre>
|
|
277
|
+<p><img src="ClassifyR_files/figure-html/unnamed-chunk-6-1.png" width="700"></p>
|
|
278
|
+<p>If using a list of <em>data.frame</em>s, the name of each element in
|
|
279
|
+the list will be used as the assay name.</p>
|
|
280
|
+<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
|
|
281
|
+<code class="sourceCode R"><span><span class="co"># Assigns first 10 variables to dataset_1, and the rest to dataset_2</span></span>
|
|
282
|
+<span><span class="va">measurementsList</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span></span>
|
|
283
|
+<span> <span class="op">(</span><span class="va">measurements</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/r/base/as.data.frame.html" class="external-link">as.data.frame</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">10</span><span class="op">]</span>,</span>
|
|
284
|
+<span> <span class="op">(</span><span class="va">measurements</span> <span class="op">|></span> <span class="fu"><a href="https://rdrr.io/r/base/as.data.frame.html" class="external-link">as.data.frame</a></span><span class="op">(</span><span class="op">)</span><span class="op">)</span><span class="op">[</span><span class="fl">11</span><span class="op">:</span><span class="fl">2000</span><span class="op">]</span></span>
|
|
285
|
+<span><span class="op">)</span></span>
|
|
286
|
+<span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">measurementsList</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"assay_1"</span>, <span class="st">"assay_2"</span><span class="op">)</span></span>
|
|
287
|
+<span></span>
|
|
288
|
+<span><span class="va">result</span> <span class="op"><-</span> <span class="fu"><a href="../reference/crossValidate.html">crossValidate</a></span><span class="op">(</span><span class="va">measurementsList</span>, <span class="va">classes</span>, classifier <span class="op">=</span> <span class="st">"SVM"</span>, nFolds <span class="op">=</span> <span class="fl">5</span>,</span>
|
|
289
|
+<span> nRepeats <span class="op">=</span> <span class="fl">3</span>, multiViewMethod <span class="op">=</span> <span class="st">"merge"</span><span class="op">)</span></span></code></pre></div>
|
|
290
|
+<pre><code><span><span class="co">## Processing sample set 10.</span></span>
|
|
291
|
+<span><span class="co">## Processing sample set 10.</span></span>
|
|
292
|
+<span><span class="co">## Processing sample set 10.</span></span></code></pre>
|
|
293
|
+<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
|
|
294
|
+<code class="sourceCode R"><span><span class="fu"><a href="../reference/performancePlot.html">performancePlot</a></span><span class="op">(</span><span class="va">result</span>, characteristicsList <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>x <span class="op">=</span> <span class="st">"Assay Name"</span><span class="op">)</span><span class="op">)</span></span></code></pre></div>
|
|
295
|
+<pre><code><span><span class="co">## Warning in .local(results, ...): Balanced Accuracy not found in all elements of results. Calculating it now.</span></span></code></pre>
|
|
296
|
+<p><img src="ClassifyR_files/figure-html/unnamed-chunk-7-1.png" width="700"></p>
|
|
297
|
+</div>
|
|
298
|
+</div>
|
|
299
|
+<div class="section level2">
|
|
300
|
+<h2 id="a-more-detailed-look-at-classifyr">A More Detailed Look at ClassifyR<a class="anchor" aria-label="anchor" href="#a-more-detailed-look-at-classifyr"></a>
|
|
301
|
+</h2>
|
|
302
|
+<p>In the following sections, some of the most useful functions provided
|
|
303
|
+in <strong>ClassifyR</strong> will be demonstrated. However, a user
|
|
304
|
+could wrap any feature selection, training, or prediction function to
|
|
305
|
+the classification framework, as long as it meets some simple rules
|
|
306
|
+about the input and return parameters. See the appendix section of this
|
|
307
|
+guide titled “Rules for New Functions” for a description of these.</p>
|
|
308
|
+<div class="section level3">
|
|
309
|
+<h3 id="comparison-to-existing-classification-frameworks">Comparison to Existing Classification Frameworks<a class="anchor" aria-label="anchor" href="#comparison-to-existing-classification-frameworks"></a>
|
|
310
|
+</h3>
|
|
311
|
+<p>There are a few other frameworks for classification in R. The table
|
|
312
|
+below provides a comparison of which features they offer.</p>
|
|
313
|
+<table class="table">
|
|
314
|
+<colgroup>
|
|
315
|
+<col width="8%">
|
|
316
|
+<col width="10%">
|
|
317
|
+<col width="8%">
|
|
318
|
+<col width="10%">
|
|
319
|
+<col width="10%">
|
|
320
|
+<col width="11%">
|
|
321
|
+<col width="14%">
|
|
322
|
+<col width="12%">
|
|
323
|
+<col width="12%">
|
|
324
|
+</colgroup>
|
|
325
|
+<thead><tr class="header">
|
|
326
|
+<th>Package</th>
|
|
327
|
+<th>Run User-defined Classifiers</th>
|
|
328
|
+<th>Parallel Execution on any OS</th>
|
|
329
|
+<th>Parameter Tuning</th>
|
|
330
|
+<th>Intel DAAL Performance Metrics</th>
|
|
331
|
+<th>Ranking and Selection Plots</th>
|
|
332
|
+<th>Class Distribution Plot</th>
|
|
333
|
+<th>Sample-wise Error Heatmap</th>
|
|
334
|
+<th>Direct Support for MultiAssayExperiment Input</th>
|
|
335
|
+</tr></thead>
|
|
336
|
+<tbody>
|
|
337
|
+<tr class="odd">
|
|
338
|
+<td><strong>ClassifyR</strong></td>
|
|
339
|
+<td>Yes</td>
|
|
340
|
+<td>Yes</td>
|
|
341
|
+<td>Yes</td>
|
|
342
|
+<td>Yes</td>
|
|
343
|
+<td>Yes</td>
|
|
344
|
+<td>Yes</td>
|
|
345
|
+<td>Yes</td>
|
|
346
|
+<td>Yes</td>
|
|
347
|
+</tr>
|
|
348
|
+<tr class="even">
|
|
349
|
+<td>caret</td>
|
|
350
|
+<td>Yes</td>
|
|
351
|
+<td>Yes</td>
|
|
352
|
+<td>Yes</td>
|
|
353
|
+<td>No</td>
|
|
354
|
+<td>No</td>
|
|
355
|
+<td>No</td>
|
|
356
|
+<td>No</td>
|
|
357
|
+<td>No</td>
|
|
358
|
+</tr>
|
|
359
|
+<tr class="odd">
|
|
360
|
+<td>MLInterfaces</td>
|
|
361
|
+<td>Yes</td>
|
|
362
|
+<td>No</td>
|
|
363
|
+<td>No</td>
|
|
364
|
+<td>No</td>
|
|
365
|
+<td>No</td>
|
|
366
|
+<td>No</td>
|
|
367
|
+<td>No</td>
|
|
368
|
+<td>No</td>
|
|
369
|
+</tr>
|
|
370
|
+<tr class="even">
|
|
371
|
+<td>MCRestimate</td>
|
|
372
|
+<td>Yes</td>
|
|
373
|
+<td>No</td>
|
|
374
|
+<td>Yes</td>
|
|
375
|
+<td>No</td>
|
|
376
|
+<td>No</td>
|
|
377
|
+<td>No</td>
|
|
378
|
+<td>No</td>
|
|
379
|
+<td>No</td>
|
|
380
|
+</tr>
|
|
381
|
+<tr class="odd">
|
|
382
|
+<td>CMA</td>
|
|
383
|
+<td>No</td>
|
|
384
|
+<td>No</td>
|
|
385
|
+<td>Yes</td>
|
|
386
|
+<td>No</td>
|
|
387
|
+<td>No</td>
|
|
388
|
+<td>No</td>
|
|
389
|
+<td>No</td>
|
|
390
|
+<td>No</td>
|
|
391
|
+</tr>
|
|
392
|
+</tbody>
|
|
393
|
+</table>
|
|
394
|
+</div>
|
|
395
|
+<div class="section level3">
|
|
396
|
+<h3 id="provided-functionality">Provided Functionality<a class="anchor" aria-label="anchor" href="#provided-functionality"></a>
|
|
397
|
+</h3>
|
|
398
|
+<p>Although being a cross-validation framework, a number of popular
|
|
399
|
+feature selection and classification functions are provided by the
|
|
400
|
+package which meet the requirements of functions to be used by it (see
|
|
401
|
+the last section).</p>
|
|
402
|
+<div class="section level4">
|
|
403
|
+<h4 id="provided-methods-for-feature-selection-and-classification">Provided Methods for Feature Selection and Classification<a class="anchor" aria-label="anchor" href="#provided-methods-for-feature-selection-and-classification"></a>
|
|
404
|
+</h4>
|
|
405
|
+<p>In the following tables, a function that is used when no function is
|
|
406
|
+explicitly specified by the user is shown as <span style="padding:4px; border:2px dashed #e64626;">functionName</span>.</p>
|
|
407
|
+<p>The functions below produce a ranking, of which different size
|
|
408
|
+subsets are tried and the classifier performance evaluated, to select a
|
|
409
|
+best subset of features, based on a criterion such as balanced accuracy
|
|
410
|
+rate, for example.</p>
|
|
411
|
+<table style="width:100%;" class="table">
|
|
412
|
+<colgroup>
|
|
413
|
+<col width="9%">
|
|
414
|
+<col width="62%">
|
|
415
|
+<col width="9%">
|
|
416
|
+<col width="9%">
|
|
417
|
+<col width="9%">
|
|
418
|
+</colgroup>
|
|
419
|
+<thead><tr class="header">
|
|
420
|
+<th>Function</th>
|
|
421
|
+<th>Description</th>
|
|
422
|
+<th>DM</th>
|
|
423
|
+<th>DV</th>
|
|
424
|
+<th>DD</th>
|
|
425
|
+</tr></thead>
|
|
426
|
+<tbody>
|
|
427
|
+<tr class="odd">
|
|
428
|
+<td><span style="padding:4px; border:2px dashed #e64626; font-family: 'Courier New', monospace;">differentMeansRanking</span></td>
|
|
429
|
+<td>t-test ranking if two classes, F-test ranking if three or more</td>
|
|
430
|
+<td>✔</td>
|
|
431
|
+<td></td>
|
|
432
|
+<td></td>
|
|
433
|
+</tr>
|
|
434
|
+<tr class="even">
|
|
435
|
+<td><span style="font-family: 'Courier New', monospace;">limmaRanking</span></td>
|
|
436
|
+<td>Moderated t-test ranking using variance shrinkage</td>
|
|
437
|
+<td>✔</td>
|
|
438
|
+<td></td>
|
|
439
|
+<td></td>
|
|
440
|
+</tr>
|
|
441
|
+<tr class="odd">
|
|
442
|
+<td><span style="font-family: 'Courier New', monospace;">edgeRranking</span></td>
|
|
443
|
+<td>Likelihood ratio test for count data ranking</td>
|
|
444
|
+<td>✔</td>
|
|
445
|
+<td></td>
|
|
446
|
+<td></td>
|
|
447
|
+</tr>
|
|
448
|
+<tr class="even">
|
|
449
|
+<td><span style="font-family: 'Courier New', monospace;">bartlettRanking</span></td>
|
|
450
|
+<td>Bartlett’s test non-robust ranking</td>
|
|
451
|
+<td></td>
|
|
452
|
+<td>✔</td>
|
|
453
|
+<td></td>
|
|
454
|
+</tr>
|
|
455
|
+<tr class="odd">
|
|
456
|
+<td><span style="font-family: 'Courier New', monospace;">leveneRanking</span></td>
|
|
457
|
+<td>Levene’s test robust ranking</td>
|
|
458
|
+<td></td>
|
|
459
|
+<td>✔</td>
|
|
460
|
+<td></td>
|
|
461
|
+</tr>
|
|
462
|
+<tr class="even">
|
|
463
|
+<td><span style="font-family: 'Courier New', monospace;">DMDranking</span></td>
|
|
464
|
+<td><span style="white-space: nowrap">Difference in location
|
|
465
|
+(mean/median) and/or scale (SD, MAD, <span class="math inline">\(Q_n\)</span>)</span></td>
|
|
466
|
+<td>✔</td>
|
|
467
|
+<td>✔</td>
|
|
468
|
+<td>✔</td>
|
|
469
|
+</tr>
|
|
470
|
+<tr class="odd">
|
|
471
|
+<td><span style="font-family: 'Courier New', monospace;">likelihoodRatioRanking</span></td>
|
|
472
|
+<td>Likelihood ratio (normal distribution) ranking</td>
|
|
473
|
+<td>✔</td>
|
|
474
|
+<td>✔</td>
|
|
475
|
+<td>✔</td>
|
|
476
|
+</tr>
|
|
477
|
+<tr class="even">
|
|
478
|
+<td><span style="font-family: 'Courier New', monospace;">KolmogorovSmirnovRanking</span></td>
|
|
479
|
+<td>Kolmogorov-Smirnov distance between distributions ranking</td>
|
|
480
|
+<td>✔</td>
|
|
481
|
+<td>✔</td>
|
|
482
|
+<td>✔</td>
|
|
483
|
+</tr>
|
|
484
|
+<tr class="odd">
|
|
485
|
+<td><span style="font-family: 'Courier New', monospace;">KullbackLeiblerRanking</span></td>
|
|
486
|
+<td>Kullback-Leibler distance between distributions ranking</td>
|
|
487
|
+<td>✔</td>
|
|
488
|
+<td>✔</td>
|
|
489
|
+<td>✔</td>
|
|
490
|
+</tr>
|
|
491
|
+</tbody>
|
|
492
|
+</table>
|
|
493
|
+<p>Likewise, a variety of classifiers is also provided.</p>
|
|
494
|
+<table class="table">
|
|
495
|
+<colgroup>
|
|
496
|
+<col width="9%">
|
|
497
|
+<col width="61%">
|
|
498
|
+<col width="9%">
|
|
499
|
+<col width="9%">
|
|
500
|
+<col width="9%">
|
|
501
|
+</colgroup>
|
|
502
|
+<thead><tr class="header">
|
|
503
|
+<th>Function(s)</th>
|
|
504
|
+<th>Description</th>
|
|
505
|
+<th>DM</th>
|
|
506
|
+<th>DV</th>
|
|
507
|
+<th>DD</th>
|
|
508
|
+</tr></thead>
|
|
509
|
+<tbody>
|
|
510
|
+<tr class="odd">
|
|
511
|
+<td>
|
|
512
|
+<span style="padding:1px; border:2px dashed #e64626; display:inline-block; margin-bottom: 3px; font-family: 'Courier New', monospace;">DLDAtrainInterface</span>,<br><span style="padding:1px; border:2px dashed #e64626; display:inline-block; font-family: 'Courier New', monospace;">DLDApredictInterface</span>
|
|
513
|
+</td>
|
|
514
|
+<td>Wrappers for sparsediscrim’s functions <span style="font-family: 'Courier New', monospace;">dlda</span> and
|
|
515
|
+<span style="font-family: 'Courier New', monospace;">predict.dlda</span>
|
|
516
|
+functions</td>
|
|
517
|
+<td>✔</td>
|
|
518
|
+<td></td>
|
|
519
|
+<td></td>
|
|
520
|
+</tr>
|
|
521
|
+<tr class="even">
|
|
522
|
+<td><span style="font-family: 'Courier New', monospace;">classifyInterface</span></td>
|
|
523
|
+<td>Wrapper for PoiClaClu’s Poisson LDA function <span style="font-family: 'Courier New', monospace;">classify</span>
|
|
524
|
+</td>
|
|
525
|
+<td>✔</td>
|
|
526
|
+<td></td>
|
|
527
|
+<td></td>
|
|
528
|
+</tr>
|
|
529
|
+<tr class="odd">
|
|
530
|
+<td>
|
|
531
|
+<span style="font-family: 'Courier New', monospace;">elasticNetGLMtrainInterface</span>,
|
|
532
|
+<span style="font-family: 'Courier New', monospace;">elasticNetGLMpredictInterface</span>
|
|
533
|
+</td>
|
|
534
|
+<td>Wrappers for glmnet’s elastic net GLM functions <span style="font-family: 'Courier New', monospace;">glmnet</span> and
|
|
535
|
+<span style="font-family: 'Courier New', monospace;">predict.glmnet</span>
|
|
536
|
+</td>
|
|
537
|
+<td>✔</td>
|
|
538
|
+<td></td>
|
|
539
|
+<td></td>
|
|
540
|
+</tr>
|
|
541
|
+<tr class="even">
|
|
542
|
+<td>
|
|
543
|
+<span style="font-family: 'Courier New', monospace;">NSCtrainInterface</span>,
|
|
544
|
+<span style="font-family: 'Courier New', monospace;">NSCpredictInterface</span>
|
|
545
|
+</td>
|
|
546
|
+<td>Wrappers for pamr’s Nearest Shrunken Centroid functions <span style="font-family: 'Courier New', monospace;">pamr.train</span>
|
|
547
|
+and <span style="font-family: 'Courier New', monospace;">pamr.predict</span>
|
|
548
|
+</td>
|
|
549
|
+<td>✔</td>
|
|
550
|
+<td></td>
|
|
551
|
+<td></td>
|
|
552
|
+</tr>
|
|
553
|
+<tr class="odd">
|
|
554
|
+<td><span style="font-family: 'Courier New', monospace;">fisherDiscriminant</span></td>
|
|
555
|
+<td>Implementation of Fisher’s LDA for departures from normality</td>
|
|
556
|
+<td>✔</td>
|
|
557
|
+<td>✔*</td>
|
|
558
|
+<td></td>
|
|
559
|
+</tr>
|
|
560
|
+<tr class="even">
|
|
561
|
+<td>
|
|
562
|
+<span style="font-family: 'Courier New', monospace;">mixModelsTrain</span>,
|
|
563
|
+<span style="font-family: 'Courier New', monospace;">mixModelsPredict</span>
|
|
564
|
+</td>
|
|
565
|
+<td>Feature-wise mixtures of normals and voting</td>
|
|
566
|
+<td>✔</td>
|
|
567
|
+<td>✔</td>
|
|
568
|
+<td>✔</td>
|
|
569
|
+</tr>
|
|
570
|
+<tr class="odd">
|
|
571
|
+<td><span style="font-family: 'Courier New', monospace;">naiveBayesKernel</span></td>
|
|
572
|
+<td>Feature-wise kernel density estimation and voting</td>
|
|
573
|
+<td>✔</td>
|
|
574
|
+<td>✔</td>
|
|
575
|
+<td>✔</td>
|
|
576
|
+</tr>
|
|
577
|
+<tr class="even">
|
|
578
|
+<td>
|
|
579
|
+<span style="font-family: 'Courier New', monospace;">randomForestTrainInterface</span>,
|
|
580
|
+<span style="font-family: 'Courier New', monospace;">randomForestPredictInterface</span>
|
|
581
|
+</td>
|
|
582
|
+<td>Wrapper for ranger’s functions <span style="font-family: 'Courier New', monospace;">ranger</span> and
|
|
583
|
+<span style="font-family: 'Courier New', monospace;">predict</span>
|
|
584
|
+</td>
|
|
585
|
+<td>✔</td>
|
|
586
|
+<td>✔</td>
|
|
587
|
+<td>✔</td>
|
|
588
|
+</tr>
|
|
589
|
+<tr class="odd">
|
|
590
|
+<td>
|
|
591
|
+<span style="font-family: 'Courier New', monospace;">extremeGradientBoostingTrainInterface</span>,
|
|
592
|
+<span style="font-family: 'Courier New', monospace;">extremeGradientBoostingPredictInterface</span>
|
|
593
|
+</td>
|
|
594
|
+<td>Wrapper for xgboost’s functions <span style="font-family: 'Courier New', monospace;">xgboost</span>
|
|
595
|
+and <span style="font-family: 'Courier New', monospace;">predict</span>
|
|
596
|
+</td>
|
|
597
|
+<td>✔</td>
|
|
598
|
+<td>✔</td>
|
|
599
|
+<td>✔</td>
|
|
600
|
+</tr>
|
|
601
|
+<tr class="even">
|
|
602
|
+<td><span style="font-family: 'Courier New', monospace;">kNNinterface</span></td>
|
|
603
|
+<td>Wrapper for class’s function <span style="font-family: 'Courier New', monospace;">knn</span>
|
|
604
|
+</td>
|
|
605
|
+<td>✔</td>
|
|
606
|
+<td>✔</td>
|
|
607
|
+<td>✔</td>
|
|
608
|
+</tr>
|
|
609
|
+<tr class="odd">
|
|
610
|
+<td>
|
|
611
|
+<span style="font-family: 'Courier New', monospace;">SVMtrainInterface</span>,
|
|
612
|
+<span style="font-family: 'Courier New', monospace;">SVMpredictInterface</span>
|
|
613
|
+</td>
|
|
614
|
+<td>Wrapper for e1071’s functions <span style="font-family: 'Courier New', monospace;">svm</span> and
|
|
615
|
+<span style="font-family: 'Courier New', monospace;">predict.svm</span>
|
|
616
|
+</td>
|
|
617
|
+<td>✔</td>
|
|
618
|
+<td>✔ †</td>
|
|
619
|
+<td>✔ †</td>
|
|
620
|
+</tr>
|
|
621
|
+</tbody>
|
|
622
|
+</table>
|
|
623
|
+<p>* If ordinary numeric measurements have been transformed to absolute
|
|
624
|
+deviations using <span style="font-family: 'Courier New', monospace;">subtractFromLocation</span>.<br>
|
|
625
|
+† If the value of <span style="font-family: 'Courier New', monospace;">kernel</span> is
|
|
626
|
+not <span style="font-family: 'Courier New', monospace;">“linear”</span>.</p>
|
|
627
|
+<p>If a desired selection or classification method is not already
|
|
628
|
+implemented, rules for writing functions to work with
|
|
629
|
+<strong>ClassifyR</strong> are outlined in the wrapper vignette. Please
|
|
630
|
+visit it for more information.</p>
|
|
631
|
+</div>
|
|
632
|
+<div class="section level4">
|
|
633
|
+<h4 id="provided-meta-feature-methods">Provided Meta-feature Methods<a class="anchor" aria-label="anchor" href="#provided-meta-feature-methods"></a>
|
|
634
|
+</h4>
|
|
635
|
+<p>A number of methods are provided for users to enable classification
|
|
636
|
+in a feature-set-centric or interactor-centric way. The meta-feature
|
|
637
|
+creation functions should be used before cross-validation is done.</p>
|
|
638
|
+<table class="table">
|
|
639
|
+<colgroup>
|
|
640
|
+<col width="9%">
|
|
641
|
+<col width="61%">
|
|
642
|
+<col width="14%">
|
|
643
|
+<col width="14%">
|
|
644
|
+</colgroup>
|
|
645
|
+<thead><tr class="header">
|
|
646
|
+<th>Function</th>
|
|
647
|
+<th>Description</th>
|
|
648
|
+<th align="center">Before CV</th>
|
|
649
|
+<th align="center">During CV</th>
|
|
650
|
+</tr></thead>
|
|
651
|
+<tbody>
|
|
652
|
+<tr class="odd">
|
|
653
|
+<td><span style="font-family: 'Courier New', monospace;">edgesToHubNetworks</span></td>
|
|
654
|
+<td>Takes a two-column <span style="font-family: 'Courier New', monospace;">matrix</span> or
|
|
655
|
+<span style="font-family: 'Courier New', monospace;">DataFrame</span>
|
|
656
|
+and finds all nodes with at least a minimum number of interactions</td>
|
|
657
|
+<td align="center">✔</td>
|
|
658
|
+<td align="center"></td>
|
|
659
|
+</tr>
|
|
660
|
+<tr class="even">
|
|
661
|
+<td><span style="font-family: 'Courier New', monospace;">featureSetSummary</span></td>
|
|
662
|
+<td><span style="white-space: nowrap">Considers sets of features and
|
|
663
|
+calculates their mean or median</span></td>
|
|
664
|
+<td align="center">✔</td>
|
|
665
|
+<td align="center"></td>
|
|
666
|
+</tr>
|
|
667
|
+<tr class="odd">
|
|
668
|
+<td><span style="font-family: 'Courier New', monospace;">pairsDifferencesSelection</span></td>
|
|
669
|
+<td>Finds a set of pairs of features whose measurement inequalities can
|
|
670
|
+be used for predicting with</td>
|
|
671
|
+<td align="center"></td>
|
|
672
|
+<td align="center">✔</td>
|
|
673
|
+</tr>
|
|
674
|
+<tr class="even">
|
|
675
|
+<td><span style="font-family: 'Courier New', monospace;">kTSPclassifier</span></td>
|
|
676
|
+<td>Voting classifier that uses inequalities between pairs of features
|
|
677
|
+to vote for one of two classes</td>
|
|
678
|
+<td align="center"></td>
|
|
679
|
+<td align="center">✔</td>
|
|
680
|
+</tr>
|
|
681
|
+</tbody>
|
|
682
|
+</table>
|
|
683
|
+</div>
|
|
684
|
+</div>
|
|
685
|
+<div class="section level3">
|
|
686
|
+<h3 id="fine-grained-cross-validation-and-modelling-using-runtests">Fine-grained Cross-validation and Modelling Using
|
|
687
|
+<em>runTests</em><a class="anchor" aria-label="anchor" href="#fine-grained-cross-validation-and-modelling-using-runtests"></a>
|
|
688
|
+</h3>
|