... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
globalVariables(c('prev')) |
2 | 2 |
#' For each cell, return a single, canonical chain-cluster |
3 | 3 |
#' |
4 |
-#' In single cell data, multiple chains (heavy-light or alpha-beta) are expected. In some cases, there could be more than two (eg multiple alpha alleles for T cells). |
|
4 |
+#' In single cell data, multiple chains (heavy-light or alpha-beta) are expected. In some cases, there could be more than two (e.g. multiple alpha alleles for T cells). |
|
5 | 5 |
#' This picks a cluster id for each cell based on the overall prevalence of cluster ids over all cells in `tbl`. |
6 | 6 |
#' If order = 1 then the canonical chain-cluster will be the most prevalent, and if order = 2, it will be the 2nd most prevalent, and so on. Ties are broken arbitrarily (possibly by lexicographic order of `cluster_idx`). |
7 | 7 |
#' @param tbl `data.frame` containing columns specified in `cell_identifiers`, `cluster_idx` and optionally `chain_identifiers` |
... | ... |
@@ -1,3 +1,4 @@ |
1 |
+# ignored words for devtools::spell_check() |
|
1 | 2 |
AIRR |
2 | 3 |
AAseq |
3 | 4 |
AAStringSet |
... | ... |
@@ -24,7 +25,9 @@ Contigs |
24 | 25 |
csv |
25 | 26 |
cytometry |
26 | 27 |
DNAStringSet |
27 |
-eg |
|
28 |
+dbplyr |
|
29 |
+dtplyr |
|
30 |
+e.g. |
|
28 | 31 |
endogenous |
29 | 32 |
endomorphic |
30 | 33 |
facto |
... | ... |
@@ -57,6 +60,7 @@ Niu |
57 | 60 |
nucleotides |
58 | 61 |
Oligo |
59 | 62 |
oligoclonality |
63 |
+overrepresentation |
|
60 | 64 |
PBMC |
61 | 65 |
pearson |
62 | 66 |
Pedersen |
... | ... |
@@ -66,9 +70,11 @@ qc |
66 | 70 |
Recode |
67 | 71 |
RepSeq |
68 | 72 |
Roadmap |
73 |
+Scater |
|
69 | 74 |
screencap |
70 | 75 |
scRNAseq |
71 | 76 |
seqs |
77 |
+SingleCellExperiment |
|
72 | 78 |
subsampled |
73 | 79 |
substitutionMatrix |
74 | 80 |
tcell |
... | ... |
@@ -78,6 +84,7 @@ TRA |
78 | 84 |
TRB |
79 | 85 |
tbls |
80 | 86 |
UMI |
87 |
+umi |
|
81 | 88 |
umis |
82 | 89 |
UMIs |
83 | 90 |
ungapped |
... | ... |
@@ -38,7 +38,7 @@ canonicalize_by_chain( |
38 | 38 |
\code{data.frame} with columns from \code{cell_identifiers} and a single \code{cluster_idx} for each cell |
39 | 39 |
} |
40 | 40 |
\description{ |
41 |
-In single cell data, multiple chains (heavy-light or alpha-beta) are expected. In some cases, there could be more than two (eg multiple alpha alleles for T cells). |
|
41 |
+In single cell data, multiple chains (heavy-light or alpha-beta) are expected. In some cases, there could be more than two (e.g. multiple alpha alleles for T cells). |
|
42 | 42 |
This picks a cluster id for each cell based on the overall prevalence of cluster ids over all cells in \code{tbl}. |
43 | 43 |
If order = 1 then the canonical chain-cluster will be the most prevalent, and if order = 2, it will be the 2nd most prevalent, and so on. Ties are broken arbitrarily (possibly by lexicographic order of \code{cluster_idx}). |
44 | 44 |
} |