Browse code

Rbuildignore WORDLIST Lazydata: FALSE Fix a few spelling errors

Andrew McDavid authored on 30/09/2020 18:11:48
Showing 5 changed files

... ...
@@ -12,3 +12,4 @@ manuscript/
12 12
 .ignore
13 13
 README.Rmd
14 14
 R/immcantation-utils.R
15
+inst/WORDLIST
... ...
@@ -64,7 +64,6 @@ LinkingTo:
64 64
 VignetteBuilder: 
65 65
     knitr
66 66
 Encoding: UTF-8
67
-LazyData: true
68 67
 NeedsCompilation: yes
69 68
 RoxygenNote: 7.1.1
70 69
 URL: https://github.com/amcdavid/CellaRepertorium
... ...
@@ -1,7 +1,7 @@
1 1
 globalVariables(c('prev'))
2 2
 #' For each cell, return a single, canonical chain-cluster
3 3
 #'
4
-#' In single cell data, multiple chains (heavy-light or alpha-beta) are expected.  In some cases, there could be more than two (eg multiple alpha alleles for T cells).
4
+#' In single cell data, multiple chains (heavy-light or alpha-beta) are expected.  In some cases, there could be more than two (e.g. multiple alpha alleles for T cells).
5 5
 #' This picks a cluster id for each cell based on the overall prevalence of cluster ids over all cells in `tbl`.
6 6
 #' If order = 1 then the canonical chain-cluster will be the most prevalent, and if order = 2, it will be the 2nd most prevalent, and so on.  Ties are broken arbitrarily (possibly by lexicographic order of `cluster_idx`).
7 7
 #' @param tbl `data.frame` containing columns specified in `cell_identifiers`, `cluster_idx` and optionally `chain_identifiers`
... ...
@@ -1,3 +1,4 @@
1
+# ignored words for devtools::spell_check()
1 2
 AIRR
2 3
 AAseq
3 4
 AAStringSet
... ...
@@ -24,7 +25,9 @@ Contigs
24 25
 csv
25 26
 cytometry
26 27
 DNAStringSet
27
-eg
28
+dbplyr
29
+dtplyr
30
+e.g.
28 31
 endogenous
29 32
 endomorphic
30 33
 facto
... ...
@@ -57,6 +60,7 @@ Niu
57 60
 nucleotides
58 61
 Oligo
59 62
 oligoclonality
63
+overrepresentation
60 64
 PBMC
61 65
 pearson
62 66
 Pedersen
... ...
@@ -66,9 +70,11 @@ qc
66 70
 Recode
67 71
 RepSeq
68 72
 Roadmap
73
+Scater
69 74
 screencap
70 75
 scRNAseq
71 76
 seqs
77
+SingleCellExperiment
72 78
 subsampled
73 79
 substitutionMatrix
74 80
 tcell
... ...
@@ -78,6 +84,7 @@ TRA
78 84
 TRB
79 85
 tbls
80 86
 UMI
87
+umi
81 88
 umis
82 89
 UMIs
83 90
 ungapped
... ...
@@ -38,7 +38,7 @@ canonicalize_by_chain(
38 38
 \code{data.frame} with columns from \code{cell_identifiers} and a single \code{cluster_idx} for each cell
39 39
 }
40 40
 \description{
41
-In single cell data, multiple chains (heavy-light or alpha-beta) are expected.  In some cases, there could be more than two (eg multiple alpha alleles for T cells).
41
+In single cell data, multiple chains (heavy-light or alpha-beta) are expected.  In some cases, there could be more than two (e.g. multiple alpha alleles for T cells).
42 42
 This picks a cluster id for each cell based on the overall prevalence of cluster ids over all cells in \code{tbl}.
43 43
 If order = 1 then the canonical chain-cluster will be the most prevalent, and if order = 2, it will be the 2nd most prevalent, and so on.  Ties are broken arbitrarily (possibly by lexicographic order of \code{cluster_idx}).
44 44
 }