Browse code

Hopefully quell errors about access to functions w/o IMPORTing in BiocCheck

Start to use .data pronoun to avoid NOTES about dplyr syntax. This likely ends use of this package for R <= 3.5.

Andrew McDavid authored on 08/09/2020 20:57:55
Showing 5 changed files

... ...
@@ -2,7 +2,7 @@ Type: Package
2 2
 Package: CellaRepertorium
3 3
 Title: Data structures, clustering and testing for single 
4 4
     cell immune receptor repertoires (scRNAseq RepSeq/AIRR-seq)
5
-Version: 0.99.0
5
+Version: 0.99.1
6 6
 Authors@R: 
7 7
     c(person(given = "Andrew",
8 8
              family = "McDavid",
... ...
@@ -27,7 +27,7 @@ Description: Methods to cluster and analyze high-throughput
27 27
     hypergeometric models.
28 28
 License: GPL-3
29 29
 Depends: 
30
-    R (>= 3.5.0)
30
+    R (>= 4.0)
31 31
 Imports:
32 32
     dplyr,
33 33
     tibble,
... ...
@@ -36,7 +36,7 @@ Imports:
36 36
     Rcpp,
37 37
     reshape2,
38 38
     methods,
39
-    rlang,
39
+    rlang (>= 0.3),
40 40
     purrr,
41 41
     Matrix,
42 42
     S4Vectors,
... ...
@@ -62,6 +62,7 @@ importFrom(methods,new)
62 62
 importFrom(methods,slot)
63 63
 importFrom(methods,validObject)
64 64
 importFrom(rlang,":=")
65
+importFrom(rlang,.data)
65 66
 importFrom(rlang,sym)
66 67
 importFrom(rlang,syms)
67 68
 importFrom(stats,as.dist)
... ...
@@ -78,4 +79,5 @@ importFrom(tibble,as_tibble)
78 79
 importFrom(tibble,data_frame)
79 80
 importFrom(tibble,tibble)
80 81
 importFrom(utils,data)
82
+importFrom(utils,packageVersion)
81 83
 useDynLib(CellaRepertorium)
82 84
deleted file mode 100644
83 85
Binary files a/R/.DS_Store and /dev/null differ
... ...
@@ -7,6 +7,7 @@
7 7
 #'
8 8
 #' @return object representing the filtration (currently a list)
9 9
 #' @export
10
+#' @importFrom rlang .data
10 11
 #'
11 12
 #' @examples
12 13
 #' cluster_filterset(min_number = 1, min_freq = 0)
... ...
@@ -25,9 +26,11 @@ cluster_filterset = function(min_number = 0, min_freq = 0, white_list = NULL){
25 26
     canon = canonicalize_cell(ccdb,
26 27
                               contig_filter_args = !!rlang::enexpr(contig_filter_args),
27 28
                               tie_break_keys, overwrite = TRUE, contig_fields = contig_fields)
28
-    count = canon$cell_tbl %>% group_by(!!!syms(ccdb$cluster_pk)) %>% summarize(n = dplyr::n(), freq = n/nrow(canon$cell_tbl))
29
+    count = canon$cell_tbl
30
+    count = count %>% group_by(!!!syms(ccdb$cluster_pk))
31
+    count = count %>% summarize(n = dplyr::n(), freq = .data$n/nrow(canon$cell_tbl))
29 32
     if(!is.null(filterset$white_list)) count = semi_join(count, filterset$white_list, by = ccdb$cluster_pk)
30
-    filter(count, n >= filterset$min_number, freq >= filterset$min_freq)
33
+    filter(count, .data$n >= filterset$min_number, .data$freq >= filterset$min_freq)
31 34
 }
32 35
 
33 36
 #' @describeIn cluster_logistic_test split `ccdb` and conduct tests within strata
... ...
@@ -55,7 +58,7 @@ cluster_test_by = function(ccdb, fields  = 'chain', tbl = 'cluster_tbl', ...){
55 58
 #' @return table with one row per cluster/term.
56 59
 #' @export
57 60
 #' @importFrom stats as.formula
58
-#'
61
+#' @importFrom utils packageVersion
59 62
 #' @examples
60 63
 #' library(dplyr)
61 64
 #' data(ccdb_ex)
... ...
@@ -236,18 +236,6 @@ pairing_tables = function(ccdb,  canonicalize_fun = canonicalize_by_chain, table
236 236
 
237 237
 }
238 238
 
239
-plot_pairing = function(pairing_list, color_labels_by){
240
-    pl = pairing_list
241
-    pairs_plt = ggplot(pairing_list$cell_tbl, aes(x = cluster_idx.1_fct, y = cluster_idx.2_fct, color = sample, shape = pop)) + geom_jitter(width = .3, height = .3)
242
-
243
-    ylab = tibble(!!color_labels_by :=  ggplot_build(pairs_plt)$layout$panel_params[[1]]$y.label) %>% left_join(feature_tbl) %>% mutate(class_color = ifelse(is.na(class_color), '#E41A1C', class_color))
244
-
245
-    xlab = tibble(!!color_labels_by :=  ggplot_build(pairs_plt)$layout$panel_params[[1]]$x.label) %>% left_join(feature_tbl) %>% mutate(class_color = ifelse(is.na(class_color), '#E41A1C', class_color))
246
-
247
-    pairs_plt = pairs_plt + theme(axis.text.x = element_text(angle = 90, color = xlab$class_color, size = 8), axis.text.y = element_text(color = ylab$class_color, size = 8))
248
-
249
-
250
-}
251 239
 
252 240
 #' @export
253 241
 #' @describeIn enumerate_pairing Recode a table with IG chains