% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PathwayAnalysis.R \name{bilevelAnalysisPathway} \alias{bilevelAnalysisPathway} \title{Bi-level meta-analysis -- applied to pathway analysis} \usage{ bilevelAnalysisPathway(kpg, kpn, dataList, groupList, splitSize = 5, metaMethod = addCLT, pCutoff = 0.05, percent = 0.05, mc.cores = 1, nboot = 200, seed = 1) } \arguments{ \item{kpg}{list of pathway graphs as objects of type graph (e.g., \code{\link{graphNEL}})} \item{kpn}{names of the pathways.} \item{dataList}{a list of datasets to be combined. Each dataset is a data frame where the rows are the gene IDs and the columns are the samples.} \item{groupList}{a list of vectors. Each vector represents the phenotypes of the corresponding dataset in dataList, which are either 'c' (control) or 'd' (disease).} \item{splitSize}{the minimum number of disease samples in each split dataset. splitSize should be at least 3. By default, splitSize=5} \item{metaMethod}{the method used to combine p-values. This should be one of addCLT (additive method [1]), fisherMethod (Fisher's method [5]), stoufferMethod (Stouffer's method [6]), max (maxP method [7]), or min (minP method [8])} \item{pCutoff}{cutoff p-value used to identify differentially expressed (DE) genes. This parameter is used only when the enrichment method is "ORA". By default, pCutoff=0.05 (five percent)} \item{percent}{percentage of genes with highest foldchange to be considered as differentially expressed (DE). This parameter is used when the enrichment method is "ORA". By default percent=0.05 (five percent). Please note that only genes with p-value less than pCutoff will be considered} \item{mc.cores}{the number of cores to be used in parallel computing. By default, mc.cores=1} \item{nboot}{number of bootstrap iterations. By default, nboot=200} \item{seed}{seed. By default, seed=1.} } \value{ A data frame (rownames are geneset/pathway IDs) that consists of the following information: \itemize{ \item \emph{Name:} name/description of the corresponding pathway/geneset \item Columns that include the pvalues obtained from the intra-experiment analysis of individual datasets \item \emph{pBLMA:} p-value obtained from the inter-experiment analysis using addCLT \item \emph{rBLMA:} ranking of the geneset/pathway using addCLT \item \emph{pBLMA.fdr:} FDR-corrected p-values } } \description{ Perform a bi-level meta-analysis conjunction with Impact Analysis to integrate multiple gene expression datasets } \details{ The bi-level framework combines the datasets at two levels: an intra-experiment analysis, and an inter-experiment analysis [1]. At the intra-level analysis, the framework splits a dataset into smaller datasets, performs pathway analysis for each split dataset using Impact Analysis [2,3], and then combines the results of these split datasets using \emph{metaMethod}. At the inter-level analysis, the results obtained for individual datasets are combined using \emph{metaMethod} } \examples{ # load KEGG pathways x <- loadKEGGPathways() # load example data dataSets <- c("GSE17054", "GSE57194", "GSE33223", "GSE42140") data(list=dataSets, package="BLMA") names(dataSets) <- dataSets dataList <- lapply(dataSets, function(dataset) get(paste0("data_", dataset))) groupList <- lapply(dataSets, function(dataset) get(paste0("group_", dataset))) IAComb <- bilevelAnalysisPathway(x$kpg, x$kpn, dataList, groupList) head(IAComb[, c("Name", "pBLMA", "pBLMA.fdr", "rBLMA")]) } \author{ Tin Nguyen and Sorin Draghici } \references{ [1] T. Nguyen, R. Tagett, M. Donato, C. Mitrea, and S. Draghici. A novel bi-level meta-analysis approach -- applied to biological pathway analysis. Bioinformatics, 32(3):409-416, 2016. [2] A. L. Tarca, S. Draghici, P. Khatri, S. S. Hassan, P. Mittal, J.-s. Kim, C. J. Kim, J. P. Kusanovic, and R. Romero. A novel signaling pathway impact analysis. Bioinformatics, 25(1):75-82, 2009. [3] S. Draghici, P. Khatri, A. L. Tarca, K. Amin, A. Done, C. Voichita, C. Georgescu, and R. Romero. A systems biology approach for pathway level analysis. Genome Research, 17(10):1537-1545, 2007. [4] R. A. Fisher. Statistical methods for research workers. Oliver & Boyd, Edinburgh, 1925. [5] S. Stouffer, E. Suchman, L. DeVinney, S. Star, and J. Williams, RM. The American Soldier: Adjustment during army life, volume 1. Princeton University Press, Princeton, 1949. [6] L. H. C. Tippett. The methods of statistics. The Methods of Statistics, 1931. [7] B. Wilkinson. A statistical consideration in psychological research. Psychological Bulletin, 48(2):156, 1951. } \seealso{ \code{\link{bilevelAnalysisGeneset}}, \code{\link{pe}}, \code{\link{phyper}} }